AD-A124 843 A SYNTAX-DIRECTED PROGRAMMING ENVIRONMENT FOR THE ADA
PROGRAMMING LRIGURGE(U) RIR FORCE INST OF TECH
WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGINEERING

UNCLASSIFIED S E FERGUSON DEC 82 AFIT/GCS/MA/82D-1 F/G

t P e » e v] v <% 7 o il W gy 3 T A pe g N - . - v .
L~ L W oL B WD - -
- A ; 3 e L » . .
i =, i Fu e ! \
= ! Rt 48 Ve L. . o h .. P
=TT T P R PR

Lt

T on oB «
SEEE

i EE] m,uuuuu.m

=l

|y

loo
——
e———
———
——————
p——

I
I
i

125

——
—
———

ADHNRE

.
[~]
B
vt
y
Y

)
§~
S
x
(o
=
<
<<

A SYNTAX-DIRECTED
PROGRAMMING ENVIRONMENT
FOR THE ADA PROGRAMMING LANGUAGE

THESIS
r

AFIT/GCS/MA/82D-1 Scott E. Ferguson
Capt USAF :

DTIC i

ELECTE

This document has been approved » \ _ ‘ -
for public release and sale; its &R FEB2 4 ‘983 ,«;‘%
| distribution is unlimited. ‘ ~

DEPARTMENT OF THE AIR FORCE A
AIR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGY

DTIC FILE COPY

Wright-Potterson Air Force Base, Ohio

AFIT/GCS/MA/82D-1

A SYNTAX-DIRECTED
PROGRAMMING ENVIRONMENT
FOR THE ADA PROGRAMMING LANGUAGE

THESIS

AFIT/GCS/MA/82D-1 Scott E. Ferguson
Capt USAF

Approved for public release; distribution unlimited.

PRS2 € W T T TS A T

‘ B
AFIT/GCS/MA/82D-1 ‘

3

* i

z ‘s
' :
.

A SYNTAX-DIRECTED

.~
- PROGRAMMING ENVIRONMENT ¥
FOR THE ADA PROGRAMMING LANGUAGE N

7 o
THESIS

Y PRESENTED TO THE FACULTY OF THE SCHOOL OF ENGINEERING ¢

OF THE AIR FORCE INSTITUTE OF TECHNOLOGY
: IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF
MASTERS OF SCIENCE IN COMPUTER ENGINEERING

t ey 4 ’.
P xr \ ,L.
1 k. w N \-
" - c -] I 2y
o’ : L — b
— K
s® : ST
by “ﬁf’ ¥ 3 of
: .. o
b, Scott E. Ferguson : e el P s
Capt USAF ‘X(
‘ -
: Graduate Computer Science ‘ R
. e e e e — 4
. 6 December 1982 3
N
S e Approved for public release; distribution unlimited. -

"n
VA
L]

S
Y
)

PREFACE

k63

This document describes the design and implementation

) of a programming support environment for the ADA programming

-y

) language based on a syntax-directed editor. The original

e

goal of the project was that of implementing only the

. editor. As the project progressed, the desire to see a

complete environment based on the editor was overwhelming.

"4'.&”.:1_ .

Of tremendous credit to the editor itself is the fact that

the compiler for a brief subset and the interpreter were

developed in a single weekend, demonstrating further the

. AL AAN, .

benefits of the approach.

P

%

Much of this effort is based upon concepts and ideas

Pl A A da i O

from research by Bruce J. MaclLennan of the Naval

e

Postgraduate School and two of his former thesis students,

T

William R. Shockley and Daniel P. Haddow, whose works are

AR -8 A

cited in the bibliography.

.-
»’

I would like to thank my advisor, Captain Roie Black,

AR

v,

X',

for directing me to this topic and for his stubborn refusal

Y,

to accept less than my best effort on the project. Thanks

are also due to my loving wife for her patience with a

madman during this ordeal, Ralph (the talking computer) for

"o Y v,

all his support, and my parents, without which this project

would never have been accomplished.

Scott E. Ferguson

L]

...............

‘i'}p i,4-|¢

Table of Contents ;

1. INTRODUCTION + + « v v v o v o o o o o o o o o o v e o 1 =
2. LANGUAGE SYNTAX SPECIFICATION . . &« &+ & v ¢ v o« « o« « 5
3. PROGRAM TREE SYNTHESIS . ¢ ¢ v ¢ ¢ ¢« o ¢ o o s o« o « « 9
3.1 Creating an ADA Program . . e+ s+ e e o e« o« 9
3.2 Conditional Node Establlshment e s e e s e e . 19 .
3.3 Insertion and Deletion « ¢+ + ¢« & ¢ « « o 21 “
3.4 Cut and Paste Editing e s e e . . 22 W
305 Lansuase SUbsetting . 3 3 L] L] 23 ;.‘y

!

4. DISPLAYING PROGRAM TREES « + « &« « ¢« « « « + 25

4.1 The Extended Cursor . . . e o s e o o s« ¢ 25
4.2 Automatic Display Justiflcation e e e e e+ s . 29
4.3 Modular Elision . . ¢ & & ¢ ¢ ¢ ¢ « « o« o« « « « 30

o Ay

Lo oy e o

th

5. THE COMPILER . « ¢ ¢ ¢ ¢ o ¢ & o o v o o o o o o« o« « » 33

q

<

5.1 Program Tree Walk 33 ;]

5.2 Symbol Table . . e e e e e e e e . 35 e

5.3 Code Generation . . e e e e e« o « o 36 ol

‘ii 5.4 Error Handling « e e e e e e . . 36 -
6. THE DYNAMIC INTERPRETER/DEBUGGER « « « . . . 38 é
7. THE PROGRAM LISTER + + + & v « & v + « o o o o o o+ + 39 3
R 178

8. THE PROTOTYPE IMPLEMENTATION . . . « ¢« ¢ « ¢« « « « . .« U0 -
1

8.1 System Organization . . S 1¢) o

8.2 Program Tree Access Package S A 3

8.3 Syntax Description Access Package 43 N,

8.4 Program Display Packages « o« . . 43 '

8.5 Environment Tool Interfaces e+« . . U5 -

9. THE ULTIMATE ENVIRONMENT « + v v & « o « o . . 46 b

-

9.1 Incremental Compilation 46
9.2 Multitasked Environment ¢« . . . 47
9.3 Semantic Specification + ¢« ¢ « « . . . U7

-PYY.

10. CONCLUSIONS AND RECOMMENDATIONS + + .« « . . . 49 .g
(}
)

10.1 COHCIUSionS . [. * . . . L] []] . 3 3 [[. . . ug 0::
10.2 Recommendations L] . . . L] L] . . 3 L] . . * . . . 50 ":

?‘q BIBLIOGRAPHY . L] . Su t]
an

e

APPENDIX I: META SYNTAX DESCRIPTION LANGUAGE 55

! ~
PR A
LR B B

@ APPENDIX II: META DEFINITION FOR ADA « « 57
APPENDIX III: META DEFINITION FOR ADAO T5 "
APPENDIX IV: SYSTEM USERS MANUAL . . . « « v « « « « . . 79

o e e o r g

e o TR L

S35

45

- v 9.9 * v "'"“ - F
CAXNNNN, ORETLE

DI)

h -

h]
N

b}

.'r;: ."'~' “l' ‘l "'

iv
D \'
"

¢ o .' RGO % PSR R "-‘,“'"'n" SIRC A .-.‘_‘-;,-“.-\'.-_;.- ‘.p\'.u\',-.;,-;'_-_\"\:‘-'_- ',,.‘. RN ERTEIS TSI '~

]

R A

“ e a e
i e

List of Figures

T

Loy
+

inner procedure . . . 32
Subroutine to process the ADA 1f statement . 34
Prototype Environment Organization U1

Figure
Figure

Figure 2-1 An ADA assignment statement « .o . b ~
Figure 2-2 Parse tree for ADA assignment statement A 0
Figure 3-1 ADA program tree root . . . e e .. 9 &
Figure 3-2 Program tree with compllation unlts e+ o s . 10 Q
Figure 3-3 Display of program tree @
with compilation_units R '
Figure 3-4 Program tree with proc_body alternative « o« o« 13
) Figure 3-5 Program tree after applying
proc_body production « « « 15
Figure 3-6 Display after applying proc_ body productlon . 15
Figure 3-7 Proc_body subtree after automatic
application of proc_spec production . . . 17
Figure 3-8 Identifier subtree and display . . . « + < 19
Figure 3-9 [dentifier with first character . . . v o« « 19
Figure 3-10 Identifier with second character 20
Figure 3-11 Proc_body subtree after deleting
the formal _part o 0 e e e e . . 22
Figure 4-1 Point cursor display . . « « o« .« . 26
Figure 4-2 Displays using the extended cursor e .. 27
Figure 4-3 Focus at decl node e o« o+ o o » . 28
Figure 4-4 Focus at program_component node . .+ . 28
Figure 4-5 Two nested procedures . . . « « « « & « « « o 31
Figure U4-6 Isolation of inner procedure 31
'i) Figure U4-7 OQuter procedure with suppressed
5
8

-—

AFIT/GCS/MA/82D~1

| N, ABSTRACT
eﬂg \4;;5 document describes the design and implementation
of a programming support environment for the ADA language
based on a syntax-directed editor and a program tree
structure. Though the prototype compiler is limited to a
small subset, the full ADA language is supported by the
remainder of the environment. Most of the environment is
driven by a language syntax description, and is therefore
capable of processing virtually any programming 1language.
The prototype syntax-directed environment demonstrates the

ability to reduce programmer idle time during development by

eliminating parsing and lexical analysis in the compiler.

The program tree structure also allows for the development

(

‘ib of superior programming environment tools.

v e s e e -y
D 1]
9 %t

vi

R |

ree
-.-.o
A a b L

...

. - P
- e o e e

s a8

3

‘l""l".‘.*'q ’-.". \“: '.‘

P R AR NS RN AN FE AN A R A AR R AT R P N N P R I RN AN AR T A T I Y

INTRODUCTION

1. INTRODUCTION

ADA is the new computer programming language for
embedded computer systems within the Department of Defense
(DOD) . Motivated by desires for increased productivity and
reduced cost, ADA 1is one of few computer 1languages ever
developed with the programming support environment in mind.
The DOD "Stoneman" document outlines requirements for an ADA
Programming Support Environment (APSE) to include many of
the conventional development tools (Ref 2). The objective
of this research 1is to present an alternative form of a
software development environment designed to significantly
reduce programmer idle time and increase productivity. This
increase in productivity should result in 1lower software
development costs for systems in the Air Force and the

Department of Defense.

A programming environment may be thought of as
providing a capability to develop programs, implying
requirements for their creation, modification and
evaluation. This is traditionally accomplished by a set of
tools: an editor produces a text program image; a compiler
generates machine code; a debugger provides a mechanism for
stepping through code execution to provide runtime

performance analysis and diagnostics for testing.

Modern enhancements call for an integrated <collection
of tools, providing a smooth and often invisible transition

from one tool to the next. The desired effect is to reduce

-
o, "

‘" L] - =y - Tu “u - - - N ™ v aw - hl - - - - - \J A
s, L S AR T R A A R VA N 0 2 L IR R R
B : ,

PYRRXXNE, | XA,

% v

-~
-

| -!;..l" (AL NS e

» RN B

Lo A AP

ORISR LA

T

INTRODUCTION

the programmer idle time between a program change and the
observation of its impact upon program execution. It is
this quality of the BASIC programming language environment
that has made it popular with personal computer users in the
microprocessor revolution, in spite of the poor reputation
the language itself has obtained among many in the computer
science community (Ref U4:14). Similar capabilities have
been seen in other interpreted languages such as FORTH, APL
and LISP. The most attractive environment currently
available for a block-structured language on a microcomputer
system 1is probably the UCSD Pascal System which attempts to
address the issues of development time reduction and system

integration.

In the traditional environment the program source text
file 1is ¢the only data structure that remains from one
iteration of development to the next. Because of this, much
time is being wasted during compilation by reanalyzing
portions of the program which may not have been changed.
The programmer, of course, usually sits idle waiting for the
results of compilation. A more useful data structure to
represent a program then becomes highly desirable, one which
will not only record the structure of the program (and
hopefully in a more efficient manner) but may also retain
desirable information, avoiding 1leungthy and redundant

reanalysis.

- -(.-'h.‘...,.}q"~,-‘,!.

it

-
-

Y

BT AR

| PEPRPAAA

oSy

¥

v, T,

]

o VY,

]

FRPRY EONRENIE SRS

-

AR AR

V. s 88 &

)
:

INTRODUCTION

Creating and maintaining this new structure requires a
different sort of editor, since a text-editor is no longer
appropriate. Also, since the program's structure is now so
readily accessable, the editor might be built to ensure that
this structure is correct as it is being entered. Much of
this effort can be accomplished using time which, in single-
user or highly interactive environment, is often wasted by
the computer in idle loops during program entry waiting for
another typed character. Editors of this type are called
syntax-directed editors. The wuse of a syntax-directed
editor frees the compiler from the time-consuming task of

determining if a program's structure is correct.

The program data structure used by most syntax-directed
editors 1is that of a program tree. This tree becomes a
major focal point where analysis information may be retained
and exchanged between tools within the environment. Just
what a program tree looks like, how it is created and used,

is a major topic of this report.

The goal of this research effort is to design and
implement a programming language environment based wupon a
syntax-directed editor to support the analysis of such an
environment and provide a foundation for future efforts.
The chosen target language is ADA, although a small subset
was chosen as a more realistic goal within time constraints
and for the sake of demonstration. The system described was

implemented on a Z80-based microcomputer system wusing the

o
.........

T P e % <

P ™

xR

c AR

S r
‘a ‘a

A s AR A

.‘.'.

...

INTRODUCTION

CP/M operating system. Software was developed in the C
programming 1language, chosen for its suitability to the
problem, compactness of code for a small machine and high-

level language portability.

Chapter 2 of this report provides some background on
the process of defining the structure of a language. How
such a language structure definition is used by the syntax-
directed editor during the synthesis of program trees is the
topic of Chapter 3. Next, Chapter 4 addresses the problems
involved with generating a conventional text display from a
program tree. Chapters 5 through 7 describe the functions
of the compiler, interpreter/debugger and program lister of
the prototype syntax-directed environment. The
implementation of these programming tools, including the
editor, 1is discusssed briefly in chapter 8. Chapter 9
outlines some more advanced concepts for improvement of the
system. Finally, chapter 10 presents the conclusions and

recommendations resulting from the research effort.

.

.

R .
........

e

s
A
?

-

-

)

g 4 & & ¢ 2 8

LANGUAGE SYNTAX SPECIFICATION

2. LANGUAGE SYNTAX SPECIFICATION

A language's syntax (or grammar) precisely defines the
rules which govein the structure of programs written in the
language. Several means nave been developed to specify a
language's syntax. One such means was proposed by Niklaus
Wirth and is a language in itself called Extended Backus-
Naur Form, or Extended BNF (Ref 14). Using Extended BNF,
the 1language designer describes the appearance of each
language construct in detail. (The language semantics, the
operational effect of a program's statements, are not

addressed by a syntax description.)

The ADA Reference Manual, as an example, uses a form of
Extended BNF to describe the ADA programming language (Ref
3. The ADA assignment statement is defined in a syntax
rule as:

assignment_statement ::=z
variable name := expression;
The name of the language construct being defined appears
first. The symbol "::=" is read "is defined as", and
immediately precedes the definition. The definition
specifies the order of appearance of elements .n the
language. The tokens ":z" and ";", called terminals, appear
in the program as they do in the definition.

"variable_name" and "expression" are non-terminals

representing other 1language constructs with their own

definitions presented elsewhere in the syntax description.

| A’

oo

BT o S g Aot K

, e e o

l'

‘lll_l

o

LANGUAGE SYNTAX SPECIFICATION

In an ADA program, an assignment statement might appear

as in figure 2-1,

NEWX := OLDX®SCALEX;

Figure 2-1. An ADA assignment statement.

"NEWX" and "OLDX®*SCALEX" are said to be produced from the

definitions of variable name and expression, respectively.

For this reason, syntax rules are often called productions.

. As a compiler analyzes a source program, it breaks it

‘ﬂi down into its 1language construct components through a

process called parsing. This is often accompanied by the

construction of a parse tree for the program. A parse tree

records the hierarchical structure of a program, Each

terminal and non-terminal used in a production definition is

organized below the non-terminal being defined. A simple

parse tree fragment for the assignment statement above 1is

shown in figure 2-2.

The definitions for variable_name and expression are ?

used to complete the structure of the parse tree below them.

Q The program tree data structure used by the syntax-directed

9 editor 1is very similar to the parse tree. The techniques

ﬁ. for constructing a program tree using a syntax description

are the topic of the next chapter.

r‘,"' R .D K4

by
A
AR

A R TR ALY ‘\‘.-‘;.-- .'~"-‘-.-\‘._~’

\- ‘Ir-- ‘- -
R AN E X

s g 4 2, 3 Iy * £ sk 5y n 0

&

o
LANGUAGE SYNTAX SPECIFICATION -

W

o,

v

- a
W,
4 <

: assignment statement| <
: g
i] A

et

[variable name| |[:=| [expression] r%1 g

K3 ! g

:.':f

Figure 2-2. Parse tree for ADA assignment statement.

Syntax description 1languages, such as Extended BNF, K

]

have been used in the development of compilers. Compilers !

are normally concerned with determining how a particular f

.

program was constructed from the rules of the 1language :

"

syntax. The syntax-directed editor, however, is concerned e

with the opposite task of constructing a program using f

syntax rules. The syntax-directed editor requires Ef

-

additional formatting information to construct the textual ;I

image of the program from the program tree. Alsc. since the 'f

v:'

syntax rules directly control program tree construction, o

they should be kept simple and efficient. For these .
reasons, Wirth's Extended BNF, was augmented to create META, -

L0

a syntax definition language used to describe a programming N

-

language's syntax and its display format. META's form and E

use will be presented during the discussion of program tree "
synthesis in chapter 3. A syntax definition of META written ?

"

in META 1is provided in appendix I. META was greatly E

2% influenced by the R-ARGOT syntax notation of another editor g
LA]

(Ref 11), b

AT AR RO

)

i el nl ind nel it b cd U UWLTY i A b b et LXW Aot B Sab e el Nal e wat p ;oo Coa gt

LANGUAGE SYNTAX SPECIFICATION

A META description for the full ADA programming
language, derived from the 1980 ADA reference manual (Ref
3), 1is given as appendix II and provides examples used

throughout this document.

R AL SRR S L

s

A,

ST IY e |

AW

J _‘ _-‘

CREIRRT

NS

s

' 'l‘.":l .

A

~r=s
o

&

PROGRAM TREE SYNTHESIS

3. PROGRAM TREE SYNTHESIS

This chapter describes the synthesis of a program <tree
in the ADA programming language. The ADA syntax description
features and their effect upon program tree synthesis and

display are examined.

3.1 Creating an ADA Program Tree
The ADA syntax description is presented as a sequence
of production rules. The first production rule defines the

language goal symbol. The definition of this goal symbol

describes the structure of the entire language in terms of
other language terminals and non-terminals. The goal symbol
is therefore used to form the root of a new program tree.
Since the ADA goal symbol is a compilation, the creation of
a new ADA program tree begins with a compilation node as in

figure 3-1.

compilation

Figure 3-1. ADA program tree root.

The production definition of compilation is:

compilation =
compilation_unit
{ @ compilation_unit } ;

The element being defined is named first, followed by an

. e e mte e e it e s S e ..
A I G N SN _.. .. K SRR ..-‘.: " 1$w._- n

PRI AIE A b £ R i N A At i A B A S G e e g & ana NS 0 h 4y g
.

% %

.....

PROGRAM TREE SYNTHESIS

equals sign ("="), the definition, and terminated with a
semicolon (";"). The "@" symbol, used for display control,

will be discussed later.

This is an example of a concatenation type of

production. The application of this production to the

compilation node results in the creation of a new child node
below the compilation node for each element in the
definition. The braces ("{"™ and "}") surrounding the second
element indicate that it may appear zero or more times.
Such an element 1is called a repeater and will be
conditionally added to the tree to allow the user the option

of establishing it as part of the program, or removing it.

Until established, these tree nodes are ignored by
environment tools such as the compiler as if they did not
exist. The wuser may also insert additional nodes of this

type into the tree as desired.

The compilation production transforms the tree of

figure 3-1 to that of figure 3-2.

lcompilation]|

_+ !

compilation_unit {compilation_unit}

Figure 3-2. Program tree with compilation_units.

10

...\,._ TR q, R A N AT ‘\))._\.._‘\‘_\“-.

»
~

>

FEEZES| [

v e w e
«) N,

. n_v

B o "- ’-“—i' Ky

IO AR

o 7

— e P v
b »

PNPAP I SR

s ol

- o

PROGRAM TREE SYNTHESIS

{compilation_unit>
{<compilation_unit>}

Figure 3-3. Display of program tree
with compilation_units.

The program tree's display image at this point is shown

in figure 3-3. The image is generated from the program tree

frontier (those tree nodes on the border of the tree which

have no children) by examining the rules and display control
information. The interior nodes (all others) are not

directly displayed.

The newline display format control ("@") in the
definition causes the second compilation_unit to be
displayed on a separate line. The angle brackets ("<" and
">") are added to the display to avoid confusing the non-
terminal names with other elements of the program that may
appear later. This choice 1is arbitrary. Non-terminals
might just as easily be distinguished by some other means
Such as highlighting, color change or alternate character
font where such capabilities exist. Note also the use of
braces in the display to reflect the conditional nature of

the second compilation unit.

The first compilation_unit node may now be examined for

potential synthesis operations. A compilation_unit |is

defined as:

| T

~

-

SN
M «

-

—
0P, ol

§TEA

Ny WS v

O S

- ¥

-

ok ko o
-

[R5 i v ve

ey < %)

r'.‘"’f."” F

SO

PROGRAM TREE SYNTHESIS

compilation_unit = < .
proc_body 5§
func_body -

! pack body 'y

: proc decl J

func decl L,
pack decl
with_use_clause -
subunit :
pragma >;

The angle brackets surrounding the definition designate this

production as an alternation. Each alternative must be a %

single element. This production has nine alternatives, one

of which is to be selected by the user for synthesis into

the tree. The programmer might decide at this point if this é
&

for instance, a procedure

portion of the program should be,

body. The list of alternatives is displayed for the user to

aid the selection process. The implemented prototype editor

requires the wuser to select an alternative by typing the

name of the alternative, with command completion to help

the selection.

speed The use of a pick device (such as a

light

pen or a mouse) would be quite efficient where such A

capabilities exist.

o~

-y v v

Assuming that a proc_body was selected, a new child is

. w e -

created Dbelow the first compilation_unit of figure 3-2 to
record the selection and transform the program tree to that

shown in figure 3-4,.

Cal el XY, ' X,

v bR At kot aa o 3 g Bt Mot Ky A a & LIS AT I\ N TIN PA ! Ny 0y et ¥a Bp .t @ S} [

PROGRAM TREE SYNTHESIS

@ :
fcompilation]

[b ;
| [p g
compilation_unit| |[{compilation_unit} %

S o 5

| |proc_body P

[}

&

; 0
Figure 3-4. Program tree with proc_body alternative. .Y

X The next synthesis action is directed by the production ;
) definition for proc_body: <
proc_body = 3

proc_spec " "is" &

{ + decl } s

0 { + rep_spec ! }

{ + program_component } .

, € "begin" 7
y + seq_of_stmts ¢
. [@ exceptions !] \
: 8 "end" [~ identifier 1 ";" ; §~‘
As is to be expected, this production lays out a template of :

L4

A what a procedure body is to look like. This 1is another 2
concatenation definition causing the creation of a tree node ¢

below the proc_body node for each element in the %

1y

definition,. The brackets ("["™ and "]") surrounding an E

element indicate that it may appear once or not at all. i

Such an element is called an option and, 1like a repeater, i

will be synthesized into the tree in a conditional manner to .

allow the user the option of establishing it as part of the =

I «
A program, or removing it. a‘

13

r%

s -
CCICICN, P A A & W

PROGRAM TREE SYNTHESIS

Options and repeaters are conditional elements not

required to create a valid program in the language. In some
instances the synthesis of certain conditional elements may
only rarely be desired and it may be preferable to require
user action to insert them rather than to remove them, thus
reducing the number of editing keystrokes for the |usual
case. The hide indicator ("!") may be wused to mark
conditional elements (such as exceptions or rep_spec in the
example) so they will not be automatically constructed in
the tree. The user must manually insert such an element to

get one in the program and on the display.

The quoted strings are terminal 1language -elements
typically used to represent reserved words and delimiters in
the 1language. They stand for themselves and thus need not
be defined. A terminal string included unconditionally in a
concatenation list represents an invariant field which does
not record a decision in the tree synthesis process and
offers no potential for growth of the tree below it. Other
research has confirmed the intuitive suggestion that such
strings need not occupy space in the tree (Ref 11:61). In
an effort to reduce the size of the program tree, therefore,

such strings are not synthesized in the tree.

Applying the proc_body production to the proc_body node

transforms the program tree of figure 3-U4 to that of figure

3-5.

Y5, % 5 % 50

BT %% % 5 Y Y

FAL 4 d KT OV LY G850 €t ol e LS A I S E % PN N v g PR A S A e i i gt o R g) S M TNV INT ol 5t &

PROGRAM TREE SYNTHESIS

h oy \
&
compilation :
h
'y ¥ 3
compilation unit| [{compilation unit}] “
] il ol ‘k
[proc body | R
¥ ! I 2
proc spec {progra@‘pomponent} [identifier] <
- {decl} seq of stmts -
A C R f\
. {
. te
(".

Figure 3-5. Program tree after applying
proc_body production,

d

. o)
3 ~
- >
. Note that the conditional elements, rep_spec and exceptions, x
. ‘L' were not automatically synthesized in the tree because of -
- ’. -
3 their hide markers. If desired, they must be inserted by .
A the wuser. The terminal strings in the production are also 3

not present in the tree. X
;
r
L.
I
{proc spec> is %
T<decl>} v
{<program_component>} o
begin f
i {seq_of_stmts>
J end [<identifier>]; e
' {<compilation_unit>} ‘
O
g Figure 3-6. Display after app}ying R
T proc_body production. -~
N

-

-

PROGRAM TREE SYNTHESIS

The program tree's current display image is shown in

| A e

figure 3-6. The space marks (""") in the definition cause a
space to be inserted in the program tree 1image. An

oy indentation mark ("+") preceeding an element indicates that

e i

the 1image for that element (represented by its subtree) 1is

S b

to be indented in the display. The optional identifier has

s been distinguished by brackets. The presence of strings in

- g e —

4

the display image of the program tree are reconstructed from

the production definition.

ST I Y

. The enforcement of a standard layout format by syntax-

)

directed editors is common. The specification of format

o~

. controls in the syntax definition, as provided here, allows

v v v

some measure of local control for individual tastes.

Ay 4

Note that at this point the only user action has been 5

” to select a procedure body for the program. All the E
reserved words and semicolons have been properly placed by ?

2 the editor, In addition, the editor has included %
é information about the types and 1locations of 1language g
) constructs that remain to be supplied by the wuser to ’
! complete the program correctly. @
At this point only two nodes on the frontier of the v

E tree (proc_spec and seq_of_stmts) are unconditional. The ;
" remainder are conditional nodes (options and repeaters) that ;
» will require some user action to establish them as areas of 3
’ gij the program to be ~xpanded upon. If the definition of f
; either remaining unconditional node is an alternation, it S

16

* e
A A Y Y AT R R AT VA AT TR OISR A A S e et B R A S L L AR Y S

"

PROGRAM TREE SYNTHESIS

too will require user action in the form of a selection

Iy

> before synthesis may continue wusing that node. The
v definition of proc_spec:
|}
K proc_spec =
"procedure" ° identifier [formal_part] ;
\
? is, however, a concatenation definition. No user action is
required to apply the proc_spec production to the tree. The
' proc_spec node is not an option or repeater, so it must be
3 present to satisfy the syntax of the language. Therefore,
3 whenever a new unconditional node, such as this, with a
concatenation definition is synthesized into the tree, 1its
:\ definition production may be automatically applied. In this :
3 manner, the proc_spec production should be automatically

»

applied when the proc_body production is applied to produce

the subtree of figure 3-7.

: Iproc bodyl

k!

{proc spec| [{program component}| 1 |[(identifier]

v s e L&

{decl}] {seq of stmts]

ol

o {]

identifier [formal part]

of proc_spec production.

B N

o
o
: N Figure 3-7. Proc_body subtree after automatic application
L]

PROGRAM TREE SYNTHESIS

This application of concatenation productions upon
unconditional nodes 1is automatic whenever such a node is
added to the tree and continues until no such nodes remain.
Likewise, the production definition for identifier:

identifier =
'AZlaz' { '09/AZ} taz' } ;

1s also applied to identifier node under proc_spec.

The first element of the definition, 'AZ}az', 1is an
example of the set construct which represents a c¢ompact
means of expressing an alternation consisting of single-
character strings. The set's alternatives may be single
characters or pairs of characters which specify an inclusive
range 1in the ASCII character set. The set 'AZjaz' |is
syntactically equivalent to the alternation definition:

letter = <
"Al! llB" "C" "D" "E" I|F" "G" "H" "I" "J" "K"
"L" "M" "N" "O" "P" I|Q" "R" "S" "T" "U" "V"
"w" nxn "Y" "Z" "a" "b" "C" "d" "ell "f" "g"
"h" "i" "j" "k" "1" "m" ||n" "O" "p" "q" "r"
"S" "t" "u" "V" "W" llxll "y" "Z" >;

Besides being obviously easier to use, the set saves a
program tree node by storing the user-selected character as
an attribute of the node. The letter production definition,

being an alternation definition, would require the selected

letter to be made a child of the letter node.

The 1identifier production applied to the identifier

node produces the subtree and display of figure 3-8.

Lo g P

h N

4 ¥ ¥ =

.v('f'

o v
To o

‘l' LS

T

 ugt

By Rak RaV Bat Bat fud Ra® Bat Bat Sl Ao¥ S S Bt Bat Fut $oo Myt 3u" Bk gt Pt §o¢ 2 AT PR 4

PROGRAM TREE SYNTHESIS

[identifier |

_3 3

U'AZ}az'] |[{'09}AZ} jaz'}

'AZiaz'{'09:iAZi_iaz'}

Figure 3-8. Identifier subtree and display.

The wuser selects (by typing) one character from the
set's valid range. This character then replaces the set
name in the display of the set node. Typing an 'X' for the
'AZlaz' set node, for example, would transforms the subtree

of figure 3-8 to that of figure 3-9.

¢
{identifier]

r§1 [(109/AZ! {az'}

X{'09iAZ) iaz'}

Figure 3-9. Identifier with first character.

3.2 Conditional Node Establishment

Conditional leaf nodes, such as the second set node in
the identifier above, require user interaction to establish
them into the tree. If the node 1is defined as a

concatenation or a string, typing the first chz-acter of its

19

’.-. mﬂ“i “.Q 3

Lt
B B R

2477,

AN

RO,

RN

1

I

o

v
s

TR

T

.

y r e
!4

’

| PO

TRR TR

T

Aty

¢

[t Sl A

- B B S 4 2 B

dfaa e

T2

iy

PROGRAM TREE SYNTHESIS

displayed name will establish the node. If the node is
defined as an alternation or a set, this interaction |is
implied by selecting an alternative or typing a character,

respectively, as previously described.

When established, the node's surrounding brackets or
braces are no longer displayed. If the conditional being
established is a repeater, a new, unestablished repeater of
the same type is automatically inserted after the node in
anticipation of the user's desire to later establish another
such node in the tree. In this manner, a stream of
characters may Dbe input for an identifier or additional
statements supplied in a sequence of statements without

having to manually insert each subsequent one,.

Consider the identifier node from figure 3-9. Typing a
'Y' establishes the second set node and becomes the second
character of the identifier. A copy of the set repeater
node 1is automatically inserted into the tree for entering

the next character as shown in figure 3-10.

'3

[identifier

['%] [_é'] [{‘09'.11\21_'.32'}]

XY{'091AZ!_ iaz'}

Figure 3-10, Identifier with second character.

-

| ¥

e T T

) S PRI v

a

[4

.y.'-

, Lo .y
";’.' 'A'nf' i

&

AT

" - -

"

e

B Nyt

Faal bl WL IE N NE Y B ., »

AR W

>

- ol N WORS AT AT TR IR TR TAVI VAN W W T e T LRl ooty e

PROGRAM TREE SYNTHESIS

The unestablished repeater set node may be manually
deleted when no more characters are to be added to the

identifier.

3.3 Insertion and Deletion

The program tree may be modified during its synthesis
with insert and delete operations. The editing focus is the
current program tree node of interest to the user. The
entire subtree below the focus designates the entity being
considered by the editor for manipulation by the next
editing command. The delete operation causes the focus
subtree to be deleted from the progranm. If the focus is at
an option or repeater node, it represents an unnecessary
(i.e. conditional) node and may be simply deleted.
Otherwise the node is required by the syntactic definition
of its parent, In this case, the node is retained but all
those which have grown from it are deleted to wipe the
subtree c¢lean and allow it to be rebuilt. To completely

delete such a node requires that its parent be deleted.

If the procedure body, previously shown in figure 3-7,
was to have no formal parameters, the focus would be moved
to the "formal part" node and the delete operation would be

invoked, resulting in the subtree of figure 3-11.

The insert operation may be used to add an optional or
repeater node to the tree. The "formal part" of the
procedure may be restored to its previous position by moving

the focus to the "identifier™ node and performing an insert

21

»
'

o

«
-

0 % % %Yy

SN N

PROGRAM TREE SYNTHESIS

¥
proc body
._$
3 l
|proc spec [Iprogra@_pomponent} [identifier]
{decl} seq of stmts|

{identifier|

Figure 3-11. Proc_body subtree after deleting
the formal_part.

operation. The type of node to be inserted is determined
from the production definition of the parent (in this case
the "proc_spec" node) and the position of the focus with
respect to this definition. An option or repeater must be
capable of being inserted at that point. Only one occurance
of an optional node may be inserted into the tree at one
time, while a repeater may be inserted as many times as
desired. A similar operation is required to insert a ncde

in the tree to the left of the focus.

3.4 Cut and Paste Editing

"Cut and paste™ operations can be easily applied to the
program tree structure. An entire subtree (such as that of
the proc_body above) can be clipped or copied from the tree
and reattached in place of any proc_body node in the tree.
This 1is a good example of how the syntax-directed editor

treats the program as program units rather than raw text.

22

) el

- -

..

RS

-_-')"-.

- -
9
L)

»

Pl 22t

’ .

b 3 o R N B 4

., -
o’

v"",

<

b

PROGRAM TREE SYNTHESIS

3.5 Language Subsetting

The tree synthesis process, as Jjust described, 1is
guided directly by the syntax description of the language.
Elements removed from the syntax description can no 1longer
be synthesized by the editor. Subsets of a language can be
created through a controlled removal of unwanted or unneeded
language features. Subsets may be useful at some
installations which, for example, wish to restrict the use
of certain language features possessing potentially
dangerous power. In the academic environment instructors
may want to disallow the use of certain programming
constructs until they are properly introduced. The dreaded
"goto" may also be a desirable target for omission from a

language.

Programs generated from the subset should be compilable
by the compiler for the entire language. This requirement
is assured, 1in a syntactic sense, 1if any program produced
from the subset grammar is producible from the original
grammar. This property determines the type of syntactic
elements, discussed below, that may be removed to produce a

subset grammar.

Conditional elements (options and repeaters) represent
syntactic units that may be omitted while still producing a
syntactically correct program, It follows that a
conditional element of the language grammar may be removed

to produce a new grammar, and that any program produced from

"o‘;l.' ." RS

.-
*w
-
)
-
~
.

yuA

-

PROGRAM TREE SYNTHESIS

the new grammar is producible from the original. Individual
alternatives within an alternation are likewise candidates
for removal since syntactically valid programs can be

created without chosing a particular alternative.

Alternative and conditional elements in a META language
description may be marked with a subset index indicator
which 1is a dollar-sign ("$") followed by a series of digits
("o" to "7TM). Each digit indicates a subset within which
that element is "turned off". An element marked with subset
index $03, for example, would be disallowed when wusing
subsets 0 or 3 of the language or both. In this manner up
to 256 grammar subsets may be supported by a single META

description.

The META definition for ADA presented in appendix II
has been reduced to a more manageable subset for *the
implementation of a full prototype syntax-directed
programming language environment. The ADAO definition given
in appendix III is the $0 subset of tne full ADA definition.
As an example of how subsetting works, the META definition
for a procedure call in ADA is:

proc_call =
name [actual_param_part $0 1 ";" ;

. The "$0" subset removes parameters from procedures resulting

in the effective definition for ADAO being:

proc_call =
name ";" ;

...............................
''''''''''
. .

s ERRRPLCAL

2% 2 ST

0 e e v NS

YN e

| A

4

-

5 a & A A

-

DISPLAYING PROGRAM TREES

4. DISPLAYING PROGRAM TREES

Because the program tree is a structure so different
from a text file, the syntax-directed editor is faced with
additional problems of how to display the program on the
screen and how to provide feedback to the wuser as to
movement of the focus within the tree. Certain advantages
also arise from the solutions to these problems as they are

discussed below.

4.1 The Extended Cursor

When editing programs using a text-based screen-
oriented editor, movement within the text is wusually
accomplished with cursor control actions such as up, down,
left and right. Each movement places the cursor in a cell
where characters may be added or changed. The process works
well for text-editing since a character cell represents both

the unit of change and of movement.

The program tree editor wants to work with program
components, however, not characters. This makes
conventional screen-relative cursor movement inappropriate
and makes the operation of mapping screen coordinates to the
tree structure too complex. Also, many elements in the
display of a program tree are not individually modifiable,
such as characters within reserved words. The user might

only be frustrated by being allowed to move to invariable

parts of the display.

...................

.
a
.'. g
[}
,'

Pt

{4
o

i

ol |

.- o
PR

7.

N

RO ’ >,

o

Fals

- e

B

LRI I .-‘

TR e -Y.‘.

cay TARARARLRD.

Taa A G4

P
‘5". i
o

<
| RO

DISPLAYING PROGRAM TREES

=
-

L4

Making the tree node the unit of movement for the !

G&' editor is accomplished by supplying a variety of commands to ‘.

k move the focus from one node to another. The entire subtree 3
j rooted at the focus designates the entity being considered)
: by the editor for manipulation by the next editing command. "
The cursor should, therefore, designate the image which ¢

| represents the entire focus. The point cursor of display E
L terminals, however, actually points to only one character c<n i
the screen. This results in undesirable ambiguity as in our ﬁ

5 previous example of the identifier. If the focus 1is E
currently on the identifier node, the point cursor lights on 3

the 1leftmost character of its image and the display 1looks ;

: like figure 4-1. Z'.
. ﬂﬁi N
: 'Aztaz'{'091AZ}_laz'}
: ;
. &
5 Figure 4-1, Point cursor display. ?
:
- But if the focus is moved down to the set 'AZ}az', the by
; cursor remains fixed since it already designates the E
T leftmost character of the set display image. E
9 v
9 The solution to this problem is the creation of an g
g extended <cursor by highlighting the display image of the ha
!) focus subtree to clearly indicate the portion of the program .
NN .

being examined. Highlighting requires the terminal ;

DISPLAYING PROGRAM TREES

capability to display text with reverse video, color change
or altered intensity. The extended cursor, appearing as an
enveloping box in figure U4-2, shows the focus at the
identifier node and after moving it down to the set node of

YAZ)az!'.

'AZiaz'{'09iAZi_taz'}

"AZiaz' | {'091AZ| iaz'}

Figure 4-2. Displays using the extended cursor.

Still, 1implementors of other syntax-directed editors have
chosen to retain the point cursor and other text-based
editor characteristics, apparently in an attempt to appear

more conventional (Ref 12:15).

Focus movement to adjacent nodes such as parent, child
or sibling forms the primary type of movement within the
program tree. It is common for keys such as "left" and
"right" as found on most terminals to be interpreted as
movements to siblings left and right of the focus in the
program tree, Likewise, M"up" and "down" translate to
movements to the parent and child of the focus. Since the
display format of the tree is dependent upon format controls

in the syntax description, it 1is quite possible that

Do 5%, % 5 St

FIFLS | ol

]

o

IORA. |

)

LM v e Tpl o g kog gt g g f! MW TN TR Y YN RN (N AE N X i 3 o - » ‘Gat @ob g0 O TN

&~
*%e

»

DISPLAYING PROGRAM TREES

:

) siblings of the same parent will not lie on the same display '

: Q$3 line. This results in focus movement on the screen which N

: may be inconsistent with the usual action with a text 5

| editor. Figure 4-3 shows the procedure displayed with the ;

X focus on the "decl" node. Using the "right" command moves f
the focus down on the screen to its right sibling (the

program_component node), as shown in figure 4-4.

procedure <identifier>[formal_part] is

{<decl>}
S {<program_component>} -
j begin {
L <{seq_of_stmts> X
: end [<identifier>]; .
(" {<compilation_unit>} .
’ Figure 4-3. Focus at decl node. ?
i -
{ ':
5 procedure <identifier>(formal_part] is S
{<decl>} .
{<program_component>}
- begin '
e {seq_of_stmts> :
] end [<identifier>]; p
2 {<compilation_unit>} -
¥ ::
Figure 4-4, Focus at program_component node. o
. R R
b L:
h .
7 v
28 i
-
L)
a
" S PR 5 I S I I I P LT TS _4’-‘_\ A . \:\ J s-' .'. u it %e Nt '.' "e
L% P S N A S o) 3 1 3 (. -A.‘.-L“‘.. ':‘-i‘-’:'s‘:\." .

DISPLAYING PROGRAM TREES

b
4.2 Automatic Display Justification 1
dEB A terminal display screen imposes severe constraints as b
j to how much of a program tree may be displayed at cne time. 'g
Determining what portion of the tree to display is a problem &:
approached in many ways by different implementors of syntax- E
p directed editors. One such implementation offers a very R
: simple approach: allow the user to specify the subtree to ?b
be displayed (Ref 10:8). The subtree displayed must be Er
: cropped to fit the viewing surface. A depth limit is also i;
enforced, suppressing the display of portions of the tree g
which are beyond a specified depth below the subtree root, r?
to make additional room on the screen. The selection of the ?
subtree to display and the depth limit are specified by the E;
.Lb user. Two enhancements to this concept have been adopted v
; for display 1image generation in the prototype syntax- i;
directed environment: automatic display justification and g
modular subtree elision. E
N
Constant repositioning of the subtree window by the z:
user is considered undesirable. An assumption that the user ;
. is 1interested only in subtrees which include the focus L
‘ allows the editor to automatically select the subtree to be §
displayed. The program subtree chosen for display on the g'
terminal screen, then, is that which contains the focus but _{
whose size does not exceed that of the screen. The focus, E%
of course, may contain a subtree whose image is arbitrarily ?

S large. When even the focus is too large to display on the
? - screen, it is clipped to show as much as possible. ;‘
3
29 -
RS
N A S, P L i B A ot %

DISPLAYING PROGRAM TREES

4.3 Modular Elision

Using the depth limit approach creates the situation
where the focus node will not be displayed if it is below
the specified depth. Proposed here as an alternative to
depth limits is a different means of suppressing detail from

the display, called elision.

The display of any subtree in the prototype environment
may be suppressed upon command of the user. The image of
the "elided"™ subtree is replaced by an arbitrary string to
mark the elided material. This allows suppression of

undesirable detail from the display under user control.

When the focus is at or within an elided subtree, the
automatic display justification mechanism will consider no
larger subtree for display within the window. This results
in the somewhat opposite effect of suppressing the display

of all but the elided subtree.

In essence, the subtree elision concept may be thought
of as specifying levels of modularity to the program tree
display process. By marking a subtree for elision, the user
is interpreted as saying that it is to be displayed as a
modular unit. That when the focus is outside of the subtree
its contents are of no specific interest, and that when the
focus 1is 1inside the subtree only 1its contents are of
specific interest. As an example, consider a program

consisting of two very simple nested procedures where the

focus is at the inner proc_body as in figure 4-5.

AR LIRS R R LA P AN S 1 Y £ SR FAa i a - X\ g 3

'."-‘-< e

DISPLAYING PROGRAM TREES

procedure outer is .

procedure inner 1is .
begin

{seq_of_stmts>
end inner;

TR P W T,

-

” begin :
X <{seq_of_stmts> -]
end outer; %

Figure 4.5. Two nested procedures.

: Eliding the 1inner procedure causes the display to -
N isolate upon it as in figure 4-6. '
.

(L

N
- procedure inner is
- begin -

{seq_of_stmts> d

‘ end inner; !

v .
e,
(4
v

g b

Figure 4-6. 1Isolation of inner procedure. F

X So long as the focus remains inside the inner procedure, the {

r

»®

display shows only that procedure, removing details from the

outer world. In figure 4.7, moving the focus out of the

x b
AAPLIATLIIN

inner procedure reveals how the inner procedure is

P RPN

suppressed from the display.

o e e
a

_.‘
AN Y
XA

'.‘

",:'?'-M{ {mh(‘.'j. S s .' . "y PO N ..) -".‘. '.‘-'. . -.";. e X et e ..' ‘.';

b
¥ n
DISPLAYING PROGRAM TREES f
7,
Y
0 ’“Kf" ;L
y procedure | outer | is ;
» .D
\ ++++ ::
) begin '
- {seq_of_stmts> “
end outer; :
r
;
Figure 4.7 Outer procedure with suppressed i
. inner procedure. ’
- :
5 g
- The wuser remains aware that something 1is there, but is
. unconcerned with the details of its construction. It 1is
; suggested that the modular elision capability graphically i
N v.
N R supports sound programming techniques such as modular Y
x (“ programming and stepwise refinement, 5
3 Program tree synthesis and display, the topic of the ‘é
previous two chapters, are the primary functions of the -
f syntax-directed editor. The following chapters briefly ?
: describe the other program development tools of the syntax- E
directed environment,. l
; -
* !
. ’
. L4
LR
", -~
» h
‘, :
L :

~T e
o« 2 s e

)
o % %t %

«

e e e T

.' .' *“'

THE COMPILER

5. THE CCMPILER

The compiler function of the prototype syntax~directed
programming language environment is the only function which
is language dependent. No means have been provided as yet
to specify semantic action in the META syntax description to
support program tree analysis and code generation. The
compiler must be coded by hand to perform these tasks. The
prototype compiler for the ADAO subset merely walks the tree
building a symbol table and generating code for a pseudo-

machine.

5.1 Program Tree Walk

The structure and assured syntactic correctness of the
program tree completely eliminate the need for a parser 1in
the conventional sense. Walking the tree provides access to
the syntactic elements of the program. The structure of the
compiler code to walk the tree directly models the

hierarchical structure of the language syntax description.

Each non-terminal in the syntax description maps to a
subroutine whose argument is the root node of a subtree of
the non-terminal's type. The routines's purpose 1is to
process and validate the structure of the subtree. Thus a
call to a "compilation" subroutine with an argument of the
program tree root (compilation) node initiates the entire
process of compiling an ADA program. Each subroutine called

processes its own <children in turn by calling other

subroutines for non-terminals or observing strings and sets

o _pu gt |

3
PN

S A

Pk s S ok

o«

THE COMPILER

for their semantic value. As an example, the tree structure

for the ADA if_stmt, syntactically defined as:

if _stmt =
"if" ° expression ° "then"
+ sSeq_of_ stmts
{ @ elsif part }
[@ else part]
@ M"end" ™ nifn wen

is processed by a subroutine like the one in figure 5-1,

procedure IF_STMT(node : tree_node);
var child : tree_node;
begin
child := first child(node);
EXPRESSION(child);
child := right_sibling(child);
SEQ_OF_STMTS(child);
child = right_sibling(child);
while (node_type(child) = "elsif_ part")
begin ~
ELSIF_PART(child);
child := right_sibling(child);
end;
if (node_type(child) = "else_part")
ELSE_PART(child);
end;

Figure 5-1, Subroutine to process the ADA if statement.

Processing for the concatenation definition of the
if_stmt maps to a series of statements to analyze each child
node in turn. The terminal strings are of no concern here

since they are not synthesized in the tree,. The expression

and seq_of_stmts are non-terminals processed by their own

subroutines. The elsif part repeater nodes are processed in

a while-~loop for as many such nodes as may be in the |if

34

L]

’!"'l'v"' ¥ oo "ol «

At A

rv rv Te

1Ol

AWOEN

hg 302 Ak e o

1t gt v

(NChN N g AW

o
G Y N B B N N A R A A AT MR A e AR SRR

THE COMPILER

statement. The optional else_part is processed in an if
statement predicated upon whether or not one such node 1is
present. Any unestablished repeaters or options are

ignored.

An alternation definition 1is processed with a case
statement (or switch) based on the type of its single child.
This child, which recorded the alternative chosen, 1is used
to determine the type of program construct which is formed
in the tree below it. If it has no child, an incomplete

program fragment is detected as an error.

Since the code to perform the tree walk as just
described maps so directly to the syntax description, it
could be automatically generated from the syntax description
file in a straightforward manner. Techniques for this have
been previously developed to automatically generate parsers
for compilers (Ref 9). The tree walk code so developed
would form a shell to be augmented with the necessary

analysis and code generation routines for the language.

An additional benefit of the tree structure is that the
program need not be accessed in a strict linear fashion, as
has been described. The entire tree 1is available for

analysis throughout the compilation process.

5.2 Symbol Table
The symbol table wused in the prototype compiler

references identifiers with a pointer to an identifier node

35

w e . ’ CAJCT ol gl SN o« n'®

> o oo)

ot

R
.

- -,
Bnd

g

T _T_5_ ¢V
B A A iy

"'.'.f.fr—-u-

Y D e =

o
A
]
Oy

P Y e N T N N N G e A T N T e BN s et o A e

Ll GO0 & A JCHMAER A A S A '.l\-!.lﬂ.!!'!Il.l LUl S/ tg St adh S f Sl 3 A S50l Sl Sad S i mal sl ten o e tupunhaien b

THE COMPILER

in the tree. The individual characters are distributed as
children of the identifier node according to the syntax
definition for identifier. A subsequent identifier
encountered 1in the program tree may be compared to those in
the symbol table by pattern matching identifier subtrees.

This leaves the storage for symbols in the trees.

5.3 Code Generation

Code generated by the prototype compiler 1is for a
pseudo-machine similar to that used by Wirth in his Pascal
subset compiler, PL/0 (Ref 13). Code is generated during
the tree walk. Each instruction is tagged with a pointer to
the tree node which is to be considered responsible for its
generation. This pointer is wused by the interpreter,

discussed later.

5.4 Error Handling

The syntax-directed editor insures only that programs
are free from syntactic errors as specified by the 1language
grammar, Semantic errors, such as encountering an
identifier that is either undeclared or of the wrong type,

must be handled by the compiler.

The error recovery function is nearly eliminated in the
compiler. Since nearly all errors are semantic in nature,
recovery in the prototype involves possibly patching up code
generation and resuming compilation at some arbitrary point
later in the tree. An undeclared variable encountered in an

expression, for example, causes an error report with an

w ve' o g

R0 =

LS N

1%} -
e’a’e "W A X

ARRR AR EXE

[B

v

[Shat Y W ¥)

Y

.
v
'\
.
3
(N
pn

THE COMPILER

instruction generated to load a constant 0 rather than
variable value. The remainder of the -expression

processed normally.

The handling of errors will at some point require

the

may

the

user to make program modifications. The compiler aids this

process by marking faulted nodes in the program tree so

the

editor can be automatically directed to them. The user may

repair them quickly and return to compilation.

TS5 3 7

A P]

-y [N e i

-

eve ava L U

THE DYNAMIC INTERPRETER/DEBUGGER

6. THE DYNAMIC INTERPRETER/DEBUGGER

The interpreter for the prototype syntax=-directed
environment 1is perhaps the most exciting component of the
environment. The interpreter provides a visual form of
trace for program execution. Though only partially
implemented with very minimal debugging facilities, it is
representative of the kind of programming development tools
that can be developed to draw upon the potential power of

the program tree structure.

The interpreter follows code generation by the
compiler., Each generated instruction 1is tagged with a
pointer to the program tree node considered responsible for
its generation. This node becomes the highlighted focus for
the program tree display as each instruction is executed to
show the programner where execution is taking place. The
focus moves across the program image as instructions are

executed to dynamically trace out program execution.

The topmost elements of the runtime stack are displayed
after each instruction is executed, along with the next
instruction to be executed. More advanced debugging
facilities, such as those described in previous research for

use in the ADA environment (Ref 6), should eventually be

incorporated into the interpreter/debugger.

WE TR

A

NSy)T

- «-“- --

3

P
Py

."

) BRI F s e

LI S

ki

-y -y WA, N ey 3,

e —yn

oo e s T

L 0 A A A & R Al

LY AN
&Y

THE PROGRAM LISTER

7. THE PROGRAM LISTER

The program lister produces a text format source file
from the program tree for wuse in generating hardcopy
listings or for transfer to a text-based environment. The
process 1is virtually identical to that of generating a
program tree display image, but without a 1line 1limit
restriction. The ability to pretty-print a program, a topic
of considerable interest in the literature, 1is inherent in

the structure and display of the program tree.

The resulting text file is intended to represent a
program which could be presented to a conventional compiler.
The lister, therefore, omits unestablished conditional nodes
(since these are ignored by the compiler) and does not
suppress the display of elided subtrees. Options might
later be added to alter these defaults and to selectively
list portions of the program, perhaps using the -elision
facility. The lister is envisioned as a tool which should
also eventually generate cross-referencing information for

programs.

»

L) " 4, LI, %
o o, " :Ln‘ -~_a o
AL RERIIRT N LU R TAL T HER LY

e e b | s

v -
T Y

e

} FR A S AR

Y S8 S v

-

WYFFEL (R

¢

A

"l .l ‘l" e v

N) N \.

THE PROTOTYPE IMPLEMENTATION

; 8. THE PROTOTYPE IMPLEMENTATION

v
Qﬁﬁ The prototype syntax-directed editing environment was

- implementated on a Heathkit H89 microcomputer system with a
four megahertz Z80 processor, 64 kilobytes of memory and 600

kilobytes of floppy=-disc storage. The environment has also

i been successfully demonstrated on an S-100 based

microcomputer system with a ten megabyte Winchester disec.
Software was developed for the CP/M operating system using
the C programming language. A brief discussion of the

implementation highlights follows.

8.1 System Organization
The environment is organized with the program tree
‘Ei storage at the center, as depicted in figure 8-1.

The syntax directed editor is the primary user
interface of the environment. Control is transferred to the
compiler, interpreter or 1lister upon command from the
editor. The META preprocessor condenses a textual META
syntax definition into a form more easily accessed by
environment tools. The terminal configuration program
records pertinent terminal characteristics in a terminal
description. Interfaces within the environment are
described briefly following a discussion of the global
software packages providing access to the program tree
structure and syntax description structure and routines for

program display generation.

40

B - . e e e - . e b >, e . _ - v e w . ' ¢
B e B SRR A G A R R R R RN R e R

THE PROTOTYPE IMPLEMENTATION

-
[T ot PRI

K
‘ SYNTAX- ‘-
. DIRECTED LISTER 3
b EDITOR .
§
' TERMINAL PROGRAM SYNTAX 5
: DESCRIPTION TREES DEFINITION .
; FILES

INTERPRETER META 4
, CONFIGURE DEBUGGER COMPILERS . RE=- ,
. PROCESSOR ;
g
| O '*
N
1 PSEUDO- SYNTAX | A
CODE DEFINITION N
j Figure 8-1. Prototype Environment Organization. -
; 3
Y 3
Four global software packages provide access to system -
data structures and display mechanisms for all the tools in {
4
, the environment. The wuse of these packages greatly &
’
s simplifies the creation of new tools within the environment. :
2 2
g 8.2 Program Tree Access Package .
The program tree access package provides any tool ﬁ

(RIS requiring access to program trees with primitives for most
: ANl ~
b types of required tree operations including: attribute N,

41

Bl Fha S3a Mo The Ak fig Bin By pop 24 bon £ a PN $io Ba S ‘?

r

THE PROTOTYPE IMPLEMENTATION

interrogation and modification, traversal, node creation and

deletion, insertion and deletion, and subtree copying.

Significant problems are encountered on a small system
when trying to manipulate a program tree too large to reside
in available main memory. Virtual memory capabilities have
been emulated to allow tree fragments to be 1loaded and
unloaded from disc as required. Tree nodes are organized in
a linear fashion in a file with pointers from node to node
being relative from the start of the file. Relative
pointers are wused to ease the problems of moving absolute
pointers around in memory. The program tree is divided into
blocks to be swapped in and out on a least-recently-used
basis. Machines providing virtual memory capabilities in

hardware could significantly speed up tree access.

Each tree node occupies eight bytes. On the average, a
program tree file will be up to eight times larger than the
corresponding text-based program file. This program storage
overhead is the tradeoff made to provide the capabilities of
the syntax-directed environment,. The decreasing price of
secondary storage makes this overhead of less concern than

in the past.

Accompanying each program tree a file information block
which carries configuration management information along
with areas for data exchange between environment tools and
the name of the syntax description with which the program

has been developed.

RS Xy

=
.

o - .

[o 0 It IR A

R)

PIPL S

LAY

L a.‘i

20, T8 pfil e - O Lt e Bas . PR LR L g ahe s mas

THE PROTOTYPE IMPLEMENTATION

8.3 Syntax Description Access Package

A syntax description access package provides tools in
the environment with primitives to access syntax
descriptions for use in program display formatting and the
analysis of syntactic content. The syntactic type of a
program tree node and its relative position in a syntactic
definition 1is represented by a pointer from the tree node

into the syntax description.

The syntax description wused by the environment is
actually a condensed data structure produced from a META
language definition by 2 preprocessor., The META
preprocessor accepts a textual language definition,
validates 1its format and contents, and creates a syntax

description file for use in the environment.

8.4 Program Display Packages

The design strategy implemented in the prototype
environment divides the processes of program image
generation and display update into two distinct packages for
use as general purpose environment wutilities. The image
generation package c¢reates a desired display image of the
program subtree in memory, completely independent of the
editing functions and tree transformations taking place.
This package also performs the automatic display
justification and elision functions described in chapter 4,
as well as determining the focus area to be highlighted on

the display screen.

< T

i

ey

-

-

-
EA

r o

PN K

B ol

e e 4

} P LT A T

»
\

>

v
\
.
.l

a0 2 2 4 3 T

s e

a s a s L AN

G

THE PROTOTYPE IMPLEMENTATION

The display update package performs screen functions to
transform the current display image into the desired display
image. The prototype system implements only a modest form
of display update optimizations. More optimal display
update algorithms, such as used in the CURSES package for
UNIX (Ref 1), are readily available on other systems and

should be easy to incorporate.

The display update process uses terminal-dependent
codes for such functions as cursor positioning, erase to end
of line and highlighting (reverse video). These codes are
supplied to the environment in the form of a terminal
description file created by a terminal configuration program
in an interactive session with the user. The terminal
description file also maintains screen height and width
information and the terminal codes used to represent the
various commands of the editor so that function keys or
control Keys available to the terminal may be used. The
terminal configuration program allows the system to be used

with most modern display terminals.

In order to remain an independent utility, the design
of the program tree display package requires a regeneration
of the entire display image after any change to the true,
This results in a gradual reduction in response time as the
size of the display subtree increases. A more efficient

means of display image generation might later improve system

performance.

. |

[O o

- .
.
s’

By Oy A Ay By

D]

THE PROTOTYPE IMPLEMENTATION

8.5 Environment Tool Interfaces

Use of the environment ordinarily begins with the
editor. The editor when invoked is given the name of the
program tree file to be edited. If this is a new file to be
created, the name of the programming language must also be
supplied. This directs the editor to the syntax description

file for use in program tree synthesis.

At any time during the editing session the interpreter,
compiler or 1lister may be invoked by command from the
editor. These separate programs are loaded and given
control after the program tree has been saved. The name of
the language-dependent compiler to be loaded is
automatically derived from the program tree's associated

programming language name.

Errors discovered during processing by the compiler are
marked for easy access by the editor. An array of tree node
pointers is kept for this purpose in the program tree file's
information block. The editing focus is automaticallv moved
to the first error marker when control returns to the
editor. Other error markers may also be examined with a

simple editor command.

Nearly 7000 1lines of C source <code were generated
during development of the syntax-directed environment. The

syntax-directed editor program is approximately 24 kilobytes

long; the compiler is nearly 28 kilobytes long.

[
|

THE ULTIMATE ENVIRONMENT

9. THE ULTIMATE ENVIRONMENT

L L W e m Y
@ TN e e N

9.1 Incremental Compilation

The wultimate programming language environment should v
A provide tools which will reduce the time spent in the 1
development cycle between program modification and testing. K
o The prototype syntax-directed environment attempts to do
this by eliminating parsing analysis in the compiler and

- providing smooth interfaces between development tools. -

~; The recompilation of program fragments which are E
. unchanged from one iteration in the development cycle to the E
i next wastes significant programmer time. Incremental :
E , compilation is one process by which such redundant i
; L compilations are avoided. A code data structure must be %
}. u included which maps to the program tree so that the results ¢
~ of the compilation process may be retained. Changes or
Q additions to program tree nodes are marked to trigger a g
. later reexamination of their associated code fragments by ’
; the compiler. Some unchanged fragments within the scope of g
}; other changed fragments may also require reexamination. A ;
i type change in the declaration of a variable, for instance,]
§ might effect code generated elsewhere to access the E
2 variable. Since 1large portions of a program tree often $
remain unchanged, the time savings brought about by K-
incremental compilation are anticipated to be significant. E
Such an incremental compilation environment has been
& e successfully based on a syntax-directed editor system at)
i Carnegie~Mellon University (Ref 5). E
' '
3 46
N X
N

- e - RRS

Gy

R T L W L T
) N y

et N)

Aty

LR AR

=INCONCR

A
¥ R

'''''''''''''

o

' 1..‘ 1 _l.

THE ULTIMATE ENVIRONMENT

9.2 Multitasked Environment

The use of multitasking, which is supported by the ADA
language, to support the programming environment 1is an
attractive means of reducing unproductive time in the
development cycle,. The incremental compiler, as a separate
but parallel task to the editor, could be triggered to
recompile program fragments as they are changed. The
interpreter/debugger might also be invoked to execute and

debug code segments at any time during the editing process.

At this point all the tools in the environment actually
merge into a single program development facility. The
development cycle of program modification and testing
collapses 1into a process where these tasks occur side by
side. In an environment where these multiple tasks are
handled by multiple processors, the user response time can
be maintained at reasonable levels. As the capabilities of
microprocessors increase and their prices decrease, such an
environment becomes feasible and very attractive for

individual programmer workstations and personal computers.

9.3 Semantic Specification

Means for specifying language semantics as an extension
to a language syntax description have been developed
elsewhere as a step toward the automatic generation of
compilers from language descriptions (Ref 8). Suchn
extensions might be applied to META grammar descriptions to

provide the syntax-directed editor with enough information

‘ e L A g R N e R U AR R N LA I L PP U PR Pt PR R G A S S S R RN
S0, V5 3 32 A ")\."’-'h'."" " LSRRI AN ._,:_ e e T Tt T e L L N N L N T N

- .
.

oA | WA

.

NN

AT TS,

3 N T

RIS s ats

Oy

."fff P LAY

e e 9 v -

Lo
éﬁ

P

Ll

c - .*'.)‘

THE ULTIMATE ENVIRONMENT

to disallow or flag semantic errors in the program tree.
The specification of a language's code generation

requirements should also be considered.

The analysis of semantic properties by the syntax-
directed editor is by no means a trivial task. A single
program change may affect the semantic validity of any
number of other program fragments. Consider, for instance,
the removal of a variable's declaration and the impact upon
all its references. Such considerations forced this topic

beyond the scope of this research.

Vo' afa’s “.)’-'.'-"'~‘.‘q.\l‘.-";.-.;.ﬂ.'.'t.\ '-.‘.--

j Bt

TNy sLr

R L7 2@ 2

| A PnF=

‘ AT AT

ARSI

»

v s

-y

N
LA

#

LE I o ok oK

R
RIS

.
O
3,

7 &

LA A X R

P R 2 R RF

Y

YL

N4,

-

CONCLUSICONS AND RECOMMENDATIONS

10. CONCLUSIONS AND RECOMMENDATIONS
10.1 Conclusions

Several important advantages have been demonstrated by
the prototype syntax-directed programming language
environment, The syntactically correct program tree
structure produced by the editor eliminates the need for a
parser within the compiler. This reduces compilation time
and makes compilers simpler and easier to build. Programmer
time need no longer be wasted repairing syntax errors
detected by the compiler. More effort can be devoted to
improving program logic and design, with less effort spent

struggling with language syntax.

The interpreter/debugger demonstrates how the program
tree structure can be associated with other structures, such
as code generated for the program, to provide powerful
features, such as program display feedback to the user
during execution, The development of a tool with these
capabilities in a text-based environment 1is considerably

more difficult.

Although the syntax-directed environment has been
developed for the ADA language, any programming language may
be incorporated. To process any additional language
requires a compiler for the language and a META syntax
description to define the language for the environment. All
other tools are language independent, requiring no

modification.

Satata PR NN [T, |V

w v, y o _»
[e

e g te W

eTYv v

e

|

h

K
K
-~
-
K3
-

Lam e it

v

e 8 & & A L.

LTS

3

“

CONCLUSIONS AND RECOMMENDATIONS

The entire prototype environment was implemented on a
microcomputer system, indicating that c¢omplete syntax-
directed program development facilities can be provided at
relatively low cost. The introduction of 1large capacity
mass storage and 16-bit microprocessor technology to
microcomputers makes single-user programmer workstations

quite attractive and affordable.

Syntax-directed editors should also have a significant
impact upon education, Teachers of basic programming may
place less emphasis on language syntax and more emphasis on
sound programming techniques. The 1language subsetting
feature of the environment may be used to introduce students
to subsets of increasing size until the entire language has

been presented.

10.2 Recommendations

Extensions to this research effort might proceed in
many directions. The previous chapter has outlined several
advanced concepts for major design extension of the
environment. The introduction of incremental compilation is
perhaps the best way of improving environment performance.
Augmenting the META language with the ability to specify
language semantics would allow for a much more useful editor

and provide for automatic compiler generation facilities.

Moving the environment to a larger or more powerful
machine might improve performance characteristics such as

response time. The 1incorporation of multi-tasking to

50

r ""Y'W’

4

F Pl WA

N R AL
L K -

'!',"'|

"y

{ PN

W

Lt T
s i A

PV

RN XS

AR AN

Vo' Bal fa’ Aa% Bu¥ o’ Kat §e% ¥a' g™ Ba fa s €at. 4at B’ 0yt 4 gt §at Jar Iy B2 o0 22 o-b o'k atl a' _, ‘A ah 8 m'd &' a‘2.8

CONCLUSIONS AND RECOMMENDATIONS

enhance the environment might best accomplished on the Intel

2" il o, 'T' 4

A W
631' iAPX-432 system or the VAX/T780.

A& Ay T

X Another class of extensions to the prototype

N L PN N

) environment involve less drastic changes to the design of

a
e 2%

the existing implementation. The expansion of the prototype
compiler toward a full ADA capability is of prime interest
for use 1in teaching ADA and developing a complete ADA
environment. Expansion of the environment debugging
. capabilities should accompany this effort to provide

: adequate support for more powerful language features.

5 As the editor 1is used, ways of improving the user

interface will surely surface. New types of commands may be

ay

g ‘Ei desirable and additional feedback in the form of help menus ol
may prove useful. Modifications might also include device- 'y
independent support for advanced terminal capabilites such
as the use of highe-resolution graphics and color and 1input ‘!

devices such as light pens or data tablets. Ky

Support for additional languages, other than ADA, might v
also be of interest. Compiler development for such

languages as PASCAL and C should be significantly simpler

P AP :

for the syntax-directed environment than for a text-based
. environment. Required META descriptions may be derived from -

d other existing syntax definitions for these languages.

)
N XA

The requirements for ADA support environments specifies

¢

o that tools be written in ADA where possible (Ref 2:15). The

L T P L)

g
L

L)

]
h - .1 . -(V -..‘5).-‘- .f -)‘- :.- .-.- .'. .. I '.‘.'_ .(’ a(‘:"n# L) ot et —'-." . '.'.*."\'."'-s' I 4 '_- R , e (l.'.'.fﬁ‘\-$~" ‘n ’ ‘..- ‘.-'..

LS

-

-_am

-

7,
&

CONCLUSIONS AND RECOMMENDATIONS

syntax-directed programming language environment should be
translated into ADA as working ADA compilers become
available. The software has been developed in modules
intended to support the ADA packaging concept in
anticipation of the need for such translation. Some
attention should also be paid to the DOD requirements for
configuration management and control for ADA support

environments (Ref 2).

A standard intermediate representation form, called
DIANA, has been developed for ADA programs (Ref 7). An
additional tool <could be built for the environment to
produce DIANA notation almost directly from the program tree
representation (and ' ice versa) for communication with other

ADA environments.

Where the need arises to exchange programs with text-
based environments, an additional tool will be required to
produce program trees from a text image. Such a tool might
be generated automatically from a syntax description in a
manner similar to the language development aids YACC and LEX
(Ref 9). The program 1lister of the syntax-directed
environment may be used to perform the opposite task of

generating text image files from a program tree.

Syntax-directed editors and environments surrounding
them are finally being developed to offload mundane
programmer tasks to the computer,. It seems ironic¢ that

programmers, bound by inadequate and cumbersome development

52

b A osra s A | SR » A ava

'

L S O E_

s A

RRRNRNE

ol

w

'\

RS ST

CONCLUSIONS AND RECOMMENDATIONS

facilities, are among the last element of society

liberated by computers.

to

be

-
o

i

- - el
RS

’I"-.

ey Y e v

PP LIAPLIA IR &

Uo % e R Ve Wt

'1 . ‘n‘h; O

L
~
N
"
»
el

BIBLIOGRAPHY

Arnold, Kenneth C. Screen Updating and Cursor Movement
Optimization: A Librar Package. Computer Science
Division, University of Ca%ifornla, Berkeley.

Department of Defense. Requirements for ADA Programming
Support Environments. Washington, D.C., 1980.

Department of Defense. Reference Manual for the Ada
Programming Language. Washington, D.C., 1980.

Dijkstra, Edsger W. "How Do We Tell Truths That Might
Hurt?" ACM Sigplan Notices, 17 (5): 13-15, (May 1982).

Feiler, Peter H. and Raul Medina-Mora. An Incremental
Programming Envirinment. Carnegie-Mellon Univ.,
Pittsburgh, PA.” Dept. of Computer Science, April 1980.

Gaudino, Richard L. Analysis and Design of Interactive
Debugging for the ADA Programming Support Environment.
Masters Thesis, Air Force Institute of ~Technology,
November 1981.

Goos, G. and Wm. A. Wulf. Diana Reference Manual.
Institute Fuer Informatik II, March 1981.

Holt, R.C. "An Introduction to S/SL: Syntax/Semantic
Language," ACM Transactions on Programming Languages and
Systems, 4 (2) :T8g, (April 19827.

Johnson, S. C. and M. E. Lesk. "Language Development
Tools," The Bell System Technical Journal, 57 (6) Part
2: 2155-2775 (July-August 1973) .

MacLennan, Bruce J. The Automatic Generation of Syntax-
Directed Editors. Naval Postgraduate School, Monterey,
CA,, 1981.

Shockley, William R. and Daniel P. Haddow. A Conceptual
Framework for Grammar Driven Synthesis. Masters Thesis,
Naval Postgraduate 3chool, Monterey, CA., 1981.

Teitelbaum, Tim, et. al. "The Why and Wherefore of the

Cornell Program Synthesizer," Proceedings of the ACM
SIGPLAN SIGOA Symposium on Text ﬁanigu?atTEn. (June
. 8-1 6. -

Wirth, Nicklaus. Algorithms + Data Structures
Programs. Prentice-Hall, 1976.

Wirth, Nicklaus. "What Can We Do About the Unnecessary
Diversity of Notation for Syntactic Definitions?"
Communications of the ACM, 20 (11): 823 (November 1977).

META SYNTAX DESCRIPTION LANGUAGE

APPENDIX I. META SYNTAX DESCRIPTION LANGUAGE

v 5

r2c,
2 The following is a definition of the META syntax
; description language, given in META.
¢
$
§ syntax =
rule
3 { @ rule } ;
: rule =
: identifier = "="
L + definition ";"
‘ identifier =
3 *AZjaz' { '09}AZi_jaz' } ;

: definition = <
: alternation
P concatenation >;

i alternation =
n¢n ~ ajement { ~ element } ~ ">V

6 concatenation =
term { ° term } ;

element =

primary [©~ ™" J [° index] ;
term = <

option

repeater

primary >;
primary =

t.1@!%* ~] factor [~ 't]

index =

"$|l { '07' } ;

option =
"[" element "]"

repeater =
"{" element "}"

factor = <
identifier
- string
¥ set >;

Sy 4

b

t

-~

relr

N I

fa

R

W W T e

| < S e

o

s

-,

L b e P W s B L g Wy P B DAL L S XY

META SYNTAX DESCRIPTION LANGUAGE

string =

nune ~
\RLRIRL { ' | } nnwn ;

set =

" pair { pairs } "nen ;
pair =

[N] [t o~] :
pairs =

ittt At et
.F)"~" *‘.\‘.‘ -

IS

| S

e T e S o
R g

""l,.i.A“fm

v v e

O]

v

N

¢

oy, .y

P

1

PP

.
oy

&

META DESCRIPTION FOR ADA

APPENDIX II. META DESCRIPTION FOR ADA
The following is a description of the ADA programming
language, written in META, as adapted from the 1980 ADA

Reference Manual.

compilation =
compilation_unit
{ @ compilation_unit $0 } ;

compilation _unit = <
proc_body
func_ _body $0
pack body $0
proc_ “decl $0
func decl $0
pack decl 30
w1th use_clause $0
subunit $0
pragma $0 >;

proc_body =
proc spec ~ "is"
- decl }
{ rep_spec ! $0 1}
{ program_component }
8 "begin"
+ seq_of_stmts
[8 exceptions ! $0]
@ "end" [~ identifier] ";" ;

func_body =
func_spec wig"
{ decl }
{ rep_spec ! }
{ program_component }
@ "begin"
+ seq_of_stmts
[@ exceptions !7]
@ "end” [“° designator] ";" ;

pack_body =
"package" ~ "body" " identifier
{ + decl }
{ + rep_spec ! }
{ program_component }
[8@ body part]
@ "end" T ° identifier] ";"

~

“is"

AL

OO T S

AR]

IR ARAA XS

‘r(,_’

"
(oRR -
...

META DESCRIPTION FOR ADA

) proc_decl = <
@ proc_spec_semi
) generlc proc decl
generic_proc_instant >;

T, |

func_decl = <
func_spec_semi
generlc func decl
generic_func_lnstant >3

P FETS

pack_decl = <
pack_spec
generic_pack_decl
generic_pack _instant >;

vV eR N

with_use_clause = -
With_clause [~ use_clause] ; 2

subunit =
"separate" ° "(" name ")" “* subunit_body ;

pragma = ‘
"pragma" “ identifier [actual_param_part] ";" ; g
proc_spec = 2
"procedure" ° identifier [formal_ part $0] ; -

“”' decl < .

object_decl

type_ decl $0)
subtype decl $0 o
number decl $0
func_decl $0
proc_decl $0
pack_decl $0
task_decl $0
exception_decl $0
rename_object $0
rename exceptlon $0
rename_proc $0
rename_ “func $0
rename_pack $0
rename task $0
use_clause $0 M
pragma $0 >; '

v e - .
g SRS)

rep_spec = < -
length_spec -
enum_type_rep A
record_type_rep o

address_spec >;

We

:. R '-. R R \.,. AR

AEYAY, S

I
‘ - _a_an_‘

META DESCRIPTION FOR ADA

A

A)
s
h program_component = < :
B ‘ proc_body N
v @ func body $0 g

pack_body $0
task_body $0
proc_stub $0
) func_stub $0
4 pack_stub $0
Py task_stub $0

pack_decl $0

task decl $0 >; 9

= e A

o

seq_of stmts =
stmt
{ @ stmt } ;

R,

exceptions =
"exception"
{ + exception_handler } ;

A 4
VLAY

[t 2 VR

identifier =
"AZiaz' { '091{AZ|_jaz' } ;

Fard

func_spec = &
"function" ° designator [“ formal_part]
® "return" ° subtype_indication ; L

R R g

G designator = < B
identifier
operator_symbol >;

iy

body_part =
"begin"
+ seq_of_stmts
[@ exceptions !] ; X

AN

proc_spec_semi =
proc_spec ";" ; N

generic_proc_decl
"generic"

+ generic_formal_param } v

@ proc_spec ";" ; -

Ry 4T

generic_proc_instant =
"procedure" °

~

identifier "is" ~
" generic_instant ";"

VoA

func_spec_semi =

+ func_spec ";" ; v

~

- e -

9 X
¢ »

b R R

|

P et A

A

LA s

o R

META DESCRIPTION FOR ADA

- o

generic_ func_decl =
“"generic"
{ + generic_formal_param }
@ func_spec ";" ;

L TR

-

generic_func_instant =

“"function" ~ designator ~ "is" iy
generic_instant ";" !
pack_spec = '
"package" " identifier ~ "ig" "

{ + decl }

[@ private_part]
@ "end" [" identifier] ";" ;

generic_pack decl =
"generic"
{ + generic_formal_param }
@ pack_spec ;

generlc pack_instant =
“"package" ~ identifier

A

"is" ° generic_instant ";"

with clause =
"with" ° name { names } ";"

use_clause =
"use" ° name { names } ";" ;

name = <
identifier
indexed_component $0
selected_component $0
slice $0
attribute $0
func_call $0
operator_symbol $0 >;

subunit_body = <
proc_body
func_body
pack body
task _body >;

Kl
-
-
-

]
Q
-
-
«
q

. o v
»

ALY, RN

actual_param_part =
"(" param_assoc { param_assocs } ")"

formal part =
"(" param_decl { param_decls } ")"

”-

object decl =
id_list ":"™ [" "constant"] " object type
[* initial] "

yrry/

O
o
AR} PV g

t:- «oa -
5
a
g
:’.
a
.
’.
s
{l
2
~
"~
-
v

. yoh

META DESCRIPTION FOR ADA

A y
i . type_decl = ?
R "type" ° identifier [“ discrim_part !] .
] LN [- type_body] menm o 4
; subtype decl = ~
; "subtype" "~ identifier ~ mis" ° ;
subtype_indication ";" ; i
: \,
number_decl = A
: id_list ":" © "constant" ° initial ";" ; B
» task_decl = Lf
) "task" [" "type"™] " identifier [° task_def] ";";

exception_decl =
id_list ":" ° "exception" ";" ;

rename_object =
identifier ":" ~ name " "renames" " name ";" ;

PRI

rename_exception =
identifier ":"

%

~ ~

"exception" " "renames" * name ";";

rename_proc =

Le .
P St
. 'l.‘;}.‘:‘-h_‘ *a

e proc spec * "renames" * name ";" ;
[) -—
:) .
) b rename_func = :
func_spec " "renames" "~ name ";" ; -
: ~
. N
- rename_pack =)
. "package" " identifier * "renames" " name ";" ; 3
' rename_task = :
i "task" ° identifier © "renames" " name ";" ;
: b~
: ™
: length_spec = X
. "for" * attribute * "use" “ expression ";" ; ;
X .
enum_type_rep =
: "for" ° name " "use" " aggregate ";" ; g
. e
7 record_type_rep = ;,
L "for" ° name ° "use")
. + record rep ; "
B =
X address_spec = !
¥ "for" ° name " "use" * "at" " simple_exp ";" ; N
¢ X,
. ~
L] K
] .
SRS :
, R
N
61
-
N
' v
L.

"l =) -(‘o’\"','_:.’-,~.\;..

. ,‘l. .t
. P .
At A s datiad " "

e LT e Y S R T Y A TR T W L F T T ’
R ey Lt A R T T T N R o N N T S E~ I~ G~ T~ ~ Tw s

META DESCRIPTION FOR ADA

task_body =
7 "task" * "body" " identifier "~ "is"
{ + decl }
{ + rep_spec ! }
{ + program_component }
@ "begin"
+ Seq_of_stmts
[@ exceptions !]
@ "end" [° identifier] ";" ;

proc_stub =
proc_spec

~

"is“ L] separate" ";" ;

fune_stub =
func_spec ° "is"

A

"separate" ";“ ;

pack_stub =
"package"

~ ~

"hbody" * identifier "is"
" separate" " ; "

task stub =
"task" ° "body" ~ identifier © "isw °
"separate“ " ; "

-e

stmt =
{ label * ! $0 } simple_stmt ;

exception_handler =
"when" ° exception_choice { exception_choices }
LD

-~

+ seq_of stmts ;

subtype_indication =
name [* constraint $0] ;

operator_symbol =
char_string ;

*
%t h

generic_formal_param = <
param_decl_ semi
generic_proc
generic_func
generic_type >;

generic_instant =
"new" “ name [generic_assocs] ;

private_ part =
"private"
{ + decl }
{ + rep_spec | } ;

.
<

,e
> ':'

- R
2

names =

NN

‘l

.
o

"," ° name ;

> Ot
:\“v‘{. &t

e

[

PE LRI AR PRIV T, S PCP O o A s e

ey

LR P AL N A ORI P P NS S PR SR

META DESCRIPTION FOR ADA

i 1] | e

indexed_component =

e name "(" expression { expressions } ")" ; 3
\.‘:"" ! fr

selected_component =
name "." component ;

slice =

L

name "(" discrete_range ")"
attribute = :
name "'" identifier ; s
func_call = N
name [actual_param_part] ; 3
param_assoc = .
[param_link °] expression ; 5
param_assocs = ,
"," ° param_assoc ; B
param_decl = ¢
id_1list ":* [° "in"] [© "out"] :
® subtype_indication [" initial] ; i
&
u param_decls = Z

", ° param_decl ;

- -

id_list =
identifier { identifiers } ;

object_type = <
subtype indication

v ng
TR Anmannne o
—-

S array_type_def $0 >; :
. '
» initial =
2 ":z" % expression ; ;
F discrim_part =
"(" diserim_decl { discrim_decls } ")" ; }
. »
e type_body = i
o "is" © type_def ; #
. task def = ¢
- - nign .
: { + entry_decl } -
y { + rep_spec ! } ;
\ @ "end" [" identifier] ; o
- :

R ITE

63

T o A N U L S N S A S S SN) RS T N - e T Lt et
. Lt t b - .& . '-: > A N I A AR '.- AN '..'_."~ _~ _q"‘ .\F “‘h\.- .‘n'n'(“~ ‘.-.\‘.n"‘- s I AR

META DESCRIPTION FOR ADA

. expression = < ¢

@ relation]

: and_comp :
or_comp

and_then_comp $0

or_else_comp $0 W

xor_comp $0 >; F

G

¥

Ay, S

aggregate =
"(" component_assoc { component_assocs } ")"

record_rep =
"record" [" align_clause]

{ + name location }

@ "end" * "racora" n;n

(R

simple_exp =
[unary operator !] term { terms } ;

label = ;
"K" jidentifier ">>"

simple_stmt = <
assignment_stmt
! if stmt
X . loop_stmt '
@ proc_call '
case_stmt $0
block $0
exit_stmt $0
return_stmt $0
goto_stmt $0
entry call $0
delay_stmt $0
abort_stmt $0
raise_stmt $0
code_stmt $0
accept_stmt $0
selective_wait $0
; cond_entry_call $0 ;
timed_entry call $0 .
null_stmt $0 >; E

ST

L ol O b o

AP PP

i
5 oy v -

i

exception_choice = <
name
"others" >;

B AN PRLIN

exception_choices =
"im ° exception_choice ;

h“"("".!. - ..1' . [J ‘ q "-"‘ -_-" '.-.’)_"".;""'-'~',- .'...‘

™
Kl
2
Y
%
Al
.
-
‘
A
)
o
a
<
d
2
A
IR
X
L]
.
N
K.
»
v

A"

A
¢
\

X

META DESCRIPTION FOR ADA

constraint = <
range_constraint
float_pt _constraint
fixed_pt_constraint
index constraint
discrim_constraint >;

char string =
- nunn o1 o~ } wnnn

param_decl_semi =
param_decl ";"

generic proc =
Thyuith"

-~

proc_spec [

generic_func =
"with" ° func_spec [

generic type =
-"type"

~

identifier [

generic assocs =

generic_is] ";" ;

® generic_is] ";" ;

~ ~

discrim_part] = "is"

® generic_type_def ";"

Tw(" generic_assoc { generic_assoc } ")" ;

expressions
"ow expression ;

*»n

component = <
identifier
"all"
operator_symbol >;

discrete_range = <
type_range
range >;

param_link =
identifier = "z=>"

identifiers =
mon * jdentifier ;
array_type_def = <
constrained_array
unconstrained_array >;

discrim decl =

Tid_list ":" ~ subtype_

discrim_decls =
";" ° discrim_decl ;

indication [® initial]

65

NV IEN ’. » p'- ‘1‘.'.\- : ; ‘. ISP -*.-*_x. -.'.)-(.-“-

DN

LT L

*

L P SRS Y

NG A AE e

[

&S e

LR

b RN e St ¥

—~ -y

y

o W R R T A NSRS e & e Sd ko < .

META DESCRIPTION FOR ADA

type_def = <
@% range_constraint
' float _pt_constraint

fixed pt constraint
array type def
record_type_def
enum type def
access type def
derived type def
prlvate type def >;

L ey e =

> N - w

entry_decl =

¥ mentry" * identifier [" entry_dimension]

. [“"formal_part 1 ";" ;
: relation =

e simple_exp [“ relation_part ! 1

and_comp =
relation *~ { and_relation } ;

or_comp =
relation ~ { or_relation } ;

and_then_comp =
Telation * { and_then_relation } ;

i or_else_comp =
" “relation ~ { or_else_relation } ;

g xor_comp =
; relation * { xor_relation } ;
y component_assoc =
4 [Tchoice_link “] expression ;
component_assocs =
s won ° component_assoc ;
; align_clause =
y mat" “~ "mod" ~ simple_exp ";"
)
5 name_location =
X name "~ "at" * simple_exp " "range" " range ";"
. unary_operator = <
- nen
L, n_n
N "not" >;
, . term =
A factor { factors } ;
N
(Y
‘l
66
"
. I
'I
d‘ £ - R LR OO .:,. ._._ .o .:,_._-‘_.:,..:\f.’.-\f..,-_'_z___‘ « ‘;\- P A AT AT AR G oty ey

IBEEE

META DESCRIPTION FOR ADA

. terms =
& add_op term ;

assignment_stmt =
name °~ ":=" ° expression ";" ; .

t if_stmt =

" "if® *° expression ~ "then"
+ seq _of_ stmts

{ @ elsif part }

[@ else part]

M 8 "end" = nyifn n;n ; v
e b
. loop_stmt = A
3 [tag ~ 1 $0] [iteration_clause °] "loop"

+ sSeq of stmts

@ "end" ~ "loop" [" identifier ! $0] ";" ;

proc_call =
name [actual_param_part $0] ";"

.o S
PSR N]

§ I

case_stmt =

A

' "case" ° expression nis" ¢
- { + cases } p
. @ "end" ~ Mcase" ";" E
- block =]
@ [tag " !] [declare]
M @ "begin"
l + seq_of_stmts A
[@ exceptions !]
) @ "end" [* identifier !] ";v ; g
3
g exit_stmt =
c. "exit" [" name] [° when_clause] ";" ;
v
. return_stmt =
. "return" [~ expression] ";" ; $
goto_stmt = -
j "goto" ~ name ";" :
o
'
. entry call = '
name [actual_param_part] ";" ; !
delay_stmt =)
3 "delay" ~ simple_exp ";" ; N
<
J abort_stmt = ;
. "abort™ ° name { names } ";" ; !
YRS raise_stmt = ;
RS "raise" [" name] ";" ; "

67

L

}J;)

-

A N85

META DESCRIPTION FOR ADA

code_stmt = ;
@ qualified_exp ";" ;

accept_stmt =
"accept" " name [formal part] .
[™ accept_action] ";" ; "

selective_wait =
"select" [condition_link] -
+ select_ alternative
{ @ or_clause }
[@ else part]
8 "end"n = "gselect" ";n ;

DFaE

>
)

}

cond_entry_call =

"select" o

+ entry_call i

X [+ seq of_stmts] '
\ @ "else" N
: + sSeq of stmts W
8 "end" ° "seTect" n " 8%

: timed_entry call = 5
: nselect" o
P, + entry_call 5
. [+ seq_ of stmts] ']

’

6 @ "or"
+ delay_alternative
e "end" l'select" "’" ;

. null_stmt =
\. "nullll l';" H

>
RSy e)

range_constraint =
; "range" “ range ;

—r—y ¥
P

’ .
\ float_pt_constraint = Y
"digits" " simple_exp [" range_constraint] ; L

' fixed pt constraint = h
. Tdelta" * simple_exp [" range_constraint] ; E
: index_constraint = 3
h "(" discrete_range { discrete_ranges } ")" ; ‘
~ diserim_constraint = 2
Z "(" diserim_spec { discrim_specs } ™)" -
g o,
generic_is = §

- -)

"is" " generic_name ;

1
3

S,
r
s ¢
3

META DESCRIPTION FOR ADA

generic_type_def = <

gfﬁ “generic_discrete s

o generic_integer ',
generlc “float

generic_ “fixed -

array_type_def $

access_type_def o

private type def >; v

generic_assoc =
[param_link "] generic_actual_param ;

“n
Lt X

type_range =
name [° range_constraint] ;

P

’;‘

range =
! simple_exp ".." simple_exp ;

constrained_array =
"array" " index_constraint ° "of"
" subtype_indication ; <

unconstrained_array = \
4 "array"™ * "(" index { indices } ")" * nof" "
® subtype_indication ; h

ij record_type_def =

"record"
: + component_list 4
: @ "end" ° "record" ;

f enum_type_def =
wn enum_lit { enum_lits } ™m)" ;

: access_type_def = ﬁ
' "access" " subtype_indication ;

derived_type_def =
“"new" " subtype_indication ;

e

X private_type_ def =
["1imited"™ ~] "private" ;

N entry dimension =
"(" discrete_range ")" ;

¥4

."'

relation_part = <
relational
in_range $0 >;

. e

g

and_relation =
00 "and" © relation ;

&

F AR R L

69

I

a\

)y ?aﬁ,ﬁai‘*1.3;?'%)?‘?.§"} VARSI O S SR TRy A o

(L% 1A

e M TR RV PO O R DU L DO B T LR A 0 LU L CEI . Wil o i b o = o o - o . L) 3 J 2, :) C ' - o kg e

META DESCRIPTION FOR ADA

; or_relation =
X Qﬁ? "or" * relation ;

S ST

and_then_relation =
Wand" ~ "then" ~ relation ; "

or else relation =
2 - —"or" ~ "else"

A

relation ; :

xor_relation =

i "xor" ~ relation ; v
%
¥ 1
) choice_link = :
N choice { choices } "=>" 4
factor =
N primary [power ! $0] ; k
N factors = :
N mul_op factor ; :
add op = < (
- nen '
j n_mn 2
: "g" $0 >; n
T elsif part =
" "elsif" ° expression ° "then"
N + seq_of stmts ;
: else part = 1
7; - "alse"
+ seq_of_stmts ; -
- tag = E
S identifier ":" r
: }
' iteration_clause = < R
while_clause ’
for_clause $0 >; :
3 *d
8 cases = ;
4 "when" choice { choices } "=>" X
y + seq of_stmts ; .
¢ declare =
) "declare" -
X { + decl } ~
X { + rep_spec ! } »
3 { + program_component } ; N
Ty when_clause = -
. "when" ° expression ; R

- . ’.‘h

(B Ny g Ry Pia My B BT 6 b o B B AT p gk Bia g non §a s iy e (T

PP

META DESCRIPTION FOR ADA

P o

qualified exp =
name "'" agg or_exp ;

accept action =
- "do"
+ seq_of_stmts
@ "end" [" identifier] ;

w e el ‘.? X B

.~
P M

condition_link =
"when" ° expression ° "=z=>n"

select_alternative = <
accept_alternative ol
delay_alternative
terminate >;

or_clause =
"or" [“ condition_link]
+ select_alternative ;

= L

delay_alternative =
delay_stmt
[@ seq_of stmts] ;

discrete_ranges =
"," © discrete_range ;

Y Sy v o

G

discrim_spec =
[diserim_link

~

] expression ;

A A A

discrim_specs =
"," © diserim_spec ;

generic_name = <
name
no>n >;

ARG s

generic discrete =
"'n(n ne>n nyn

generic integer
"'nrangen A gy

| AN

generic float =
-"delta" A ongyn

generic fixed =
—"digits" A ongeyn

Lo

generic_actual_param = <
expression
o name
- subtype_indication >;

h
-
»
r
¢
’
r
-

R’ AN ERY] YRR e L Jut R Ca e A g & § 0 aoP TaC 8o¥ Hal s o e (PSR TN N S Y P ie 2 ue o » v Vb s e

L o= >

META DESCRIPTION FOR ADA t

n

.

) A
. index = 9
F & name " "range" ~ "> >
indices = -

%

mom " index ;

s component_list = <
, components
- null comp >;

o =
B ol

13

¥,

enum_lit = <
identifier
char_lit >;

Lol

a

Ct
‘ ,,m

enum_lits =
"," % enum_lit ;

- relational = f
. rel_op " simple_exp ; M
. "
in_range = &
y simple_exp [~ "not"] © "in" " range_or_subtype ; A
d o
: choice = < D
. simple_exp K
) . discrete_range ¢
g ‘;‘ "others" >; .
choices = f
""" ® choice ; N
. primary = < '
decimal_number
name N
' nested_exp ~
r, based_number $0 i
- enum_Tit $0 "
char_string $0 :
i func_call $0
i "null" $0 X
2 aggregate $0 "
) allocator $0 -
type conversion $0 bt
A qualified_exp $0 >; &
. power =
. "R¥" primary ; N
n
R
mul op = < ¢
- nwen e
"/"
i "mod" $0 N
Vet "rem" $0 >; N
72
; R
f \

"

- '. . « « l. - -,
:..-_'.ri';}.e‘%,ah o3

v

S A h G A T e Y s L S R G ey

PG JR Walh WA TR by BVa' £h0 Zig d'a Bia B¢ Wy, abo abo i el gy g2 72g

>,

Y X]

Ty

META DESCRIPTION FOR ADA

: \
l'
¥
N while_clause = B
’ §§§ "while" * expression ; 4
))
for_clause = -
"for" ~ identifier * "in"™ [* "reverse" !] v
" discrete_range ;]
) L
h agg_or_exp = < 5
v aggregate o
, nested_exp >;
f accept alternative = f
5 accept_stmt v
. [@ seq of stmts] ; g
terminate = N
"terminate" ";" ; ,
diserim_link = :
N name { names } = "=>" {
X £

components =
2 { @ component_decl }
[@ variant_part] "" ;

null comp =

ﬁ "null" ";" ;

3 char lit = X
Y - e v o~ nn N
z N
) rel op = < ;
¥ - nan Ny
"/="

: ng on :
A "<=" Y
: ny n :
LDEL DY ;
range_or_subtype = < "
A range)
s subtype_indication >; '
decimal_number = g

i integer [decimal_part ! $0] [exponent ! $0] ;
y nested_exp = -
/ "(" expression ")" ; e
’ RS
based_number = Y
integer "#" based_integer [based _decimal !] :

5% " [exponent !] ;

o W P o

P

META DESCRIPTION FOR ADA

‘ allocator =
Q@} "new" ~ name ["~ allocation] ;

type_conversion =
name "(" expression ")"

component_decl =
id_list ":" " object_type [" initial] ";"

variant part =
“Mcase" © name © "is"
{ + variant_case }
e "end" -~ "case" ll;" ;

integer =

109' { '09i_'} ;
decimal_part =

"." integer ;

exponent =
wE" [sign] integer ;

based_integer =
'091AZtaz' { '09iAZi_iaz' } ;

Y based_decimal =
"." based_integer ;

PN T R IS WA S PSSR A A Flaa ue R LR Aol | o oy me ot g e b L Lt g S by

allocation = <
nested_exp
aggregate
diserim_constraint
index_constraint >;

£ & 28 a ol i

variant_case = :
"when" ° choice { choices } = "=>" y
+ component_list ; i
sign = <
"+"
w_v >;

P N N O I

s - _.. -~ '.‘,“ B -. o - _. o ..\.q.- ._.. et - IR '-:\._.‘;.-\"_. ~-.-;'.\'_. 1‘\:_. o { -,‘.) . -.):.. S -.. e -‘. --‘\-_\ \‘*ﬁ‘.\"\-‘\

META DESCRIPTION FOR ADAO

III. META DESCRIPTION FOR ADAO

The following is a META description for the ADAO subset i

: implemented in the full prototype syntax-directed N
: programming language environment. This subset is the $0 3
subset extracted from the previous ADA description. i

4 compilation = ;
] compilation_unit ; -

compilation_unit = <
pruc_body >;

RGP, R

. proc_body =
. proc_spec ~ "is"
{ + decl }
{ + program_component }
@ "begin"

3 + seq_of stmts pt

@ "end" ["~ identTifier] ";n ; ht

1 o

" proc_spec = S
"procedure”" ° identifier ;

decl = < g

object_decl >; -

program_component = <
proc_body >; *J

seq_of_stmts = -

A stmt
o { @ stmt } ;
¥ identifier =
. 'AZiaz' ('091AZi_iaz' } ; Ny
. object_decl = %
id_list ":" [© "constant"] ° object_type 5
{ ~ initial] ;"
:. stmt = :
., simple_stmt ; A
- X
g id_list = N
identifier { identifiers } ;
d
y object_type = < ,
: subtype_indication >; -
75 "
l. q
.]
’ o
L e e e L e e S e i e e

META DESCRIPTION FOR ADAO

initial =
n:=" % expression ;

simple_stmt = <
assignment_stmt
if_stmt
loop_stmt
proc_call >;

identifiers =
non ° jdentifier ;

subtype_indication =
name ;

expression = <
relation
and_comp
or_comp >;

assignment_stmt =
name ~ ":=" " expression ";"

if_stmt =
nif® ~ expression ° "then"
+ seq_of stmts
{ @ elsif part }
[@ else part]
@ "end" T ongfn n;n

loop_stmt =

iteration_clause ~] "loop"

+ seq _of_ stmts
@ "and" ~ "lOOp" n;n

proc_call =
name ";" ;

name = <
identifier >;

relation =

simple_exp [" relation_part vt 1

and_comp =

relation *~ { and_relation } ;

or_comp =
relation ~ { or_relation } ;

elsif part =

"elsif" ~ expression ° "then"

+ Seq_of_stmts ;

.................

.......
0 T T R et T e e W T S

...........
......

v

WEEEL

.’
q
by
by
My

yxrs | rr

YT a ™
-

Y

TR

s B TVIRW

e -
e By Yo

¥

I £y AT, 5T,

A

«

[

META DESCRIPTION FOR ADAO

5
I’.
else_part = A
‘}:, "alse" ::
+ seq_of_stmts ; s
iteration_clause = < !
while_clause >; &
:
simple_exp = '
[unary_operator !] term { terms } ; -
y relation_part = < N
: relational >; .
4 “
: and_relation = N
"and" ° relation ; <
\ or_relation = ¢
s "or" * relation ; 8
. s
while clause = it
"while" ° expression ; '
. unary operator = < &
y - nn
A n_n !
) "not" >; e,
h term =
factor { factors } ; A
' terms =
add_op term ; b
relational = .
rel_op " simple_exp ; 8
1y
)
factor = 2
primary ; A
factors = "
mul_op factor ; X
add op = < ,
- "on 5
n_n >
: rel op = < ~
, - non 3
Wpa .
"<- " :
ngan '
. ny n R
Y ny=n 5 ; by
.
o

17

ﬁ'.ﬂ'.& 1!.».;.&. s*&ﬂ..*b\u‘mkh»%{&w{h u.fl-. N .LMM.}AA_:. "'.'Cm \;\" - '-.'Z:_u.':_'f \';‘i'.':'f;:'\ -t

g 3
META DESCRIPTION FOR ADAO .
&
.
N oo primary = < %
; ﬁﬁ& decimal_number N
) name :
“ nested_exp >; .
. mul op = < g
A - ngn vts
¥ nyn > ’ i'_
: decimal_number = F
h integer ; :
3 nested_exp = X
) "(" expression ")" ; X
: integer = ’f
: '09' { '09i_"' } ; ’
: ’
¥
3
il
v
L] "
‘.'
a :{
.: : '
B wy
. y
2 -
) "
e
[
r
N
"
¥ I
e 'q'?/ [}
.)
\ %
* ¢
78 ‘
’

P 0 i . o

B

\

N i)
-

P

K

%

APPENDIX IV. SYSTEM USER'S MANUAL

~ e
> o -

3 v
" :
y ¢
) d
A 't
: gl
‘
\

) SYSTEM USER'S MANUAL ‘
" ’
$ FOR THE SYNTAX-DIRECTED :
- PROGRAMMING LANGUAGE ENVIRONMENT
X '
’ L)
. v
I Ly
» 2l
3 Q
2 .
Y f
» ‘;
» h
f: l
;

NN]
: 3
Ly "

47 SERERAELYLT COM DA Rr Y, (Y RN DA R RN

SYSTEM USER'S MANUAL

. éﬁb User's Manual Contents

BRSSO A o

1 . SYNTAX-DIRECTED EDITOR 3 81

[RERS

" 1.1 Entering the Editor « « . +. 81
; 1.2 Editor Commands . . ¢ ¢ ¢« ¢ o ¢ o ¢ o « & . . 82
1.2.1 Focus Movement . . . « « « ¢ &+ & « o+ +» » 82
r 1.2.1.1 Move Right . . o« v e e e . .« 82
¢ 1.2.1.2 Move Left e e e o o . o+ . . 83 Ry
1.2.1.3 Move Long nght « e e e e . « 83 “d
s 1.2.1.4 Move Long Left » 83 E
: 1.2.1.5 Move Up « + « « v v « o v « . . . 83
1.2.1.6 Move Down . e e s+ o o o s+ o o . 84 -
1.2.1.7T Move Long Up . « ¢« ¢ ¢« + ¢« « « . . 84 N
. 1.2.17.8 Move Long Down 84 3
b 1.2.1.9 Move To Leaf « + ¢« « «. . . 84
: 1.2.1.10 Move To Last Focus 84 E
J 1.2.1.11 Mark and GO . « +« « « + « + + « o+ 85 Q
1.2.2 Edit Commands . . . « . . « .« . .+« + o+ 85
1.2.2.1 Insert Right . . . « « ¢« ¢« « « . « 85 Py
1.2.2.2 Insert Left « + « o+ » 86
1.2.2.3 Clip v v ¢ ¢« ¢« ¢ v o o o« « o « « o 86 t
X 1.2.2.4 COPY v v ¢« o ¢ ¢ o o o o o o + « « 87 '
X 1.2.2.5 Kill . ¢ ¢« ¢ ¢ ¢ ¢ o o o o o o « o 87 .
T 1.2.2.6 Delete . . + « + +« « « « « « « . . 88 "
1.2.3 Control Commands e 4« s s e e s+ e« + . . B8
)’ 1.2.3.1 Help . . o« o e e . o e . . 88 :Q
y 1.2.3.2 Elide . e e e s e s e . . 88 o)
1.2.3.3 WANAOW . « « « « v+ + v o o o o . 89 's
4 1.2.3.4 Invoke Compiler 89 '
1.2.3.5 Invoke Interpreter 90)
1.2.3.5.1 Single Step . ¢+ « « « 90 ,
1.2.3.5.2 Continue Execution « + + « 90 o
1.2.3.5.3 Restart . . . « « + « « « « 91 h
1.2.3.5.4 Exit Interpreter 91 R
1.2.3.6 Invoke Lister ¢« « « + « « 91 i
1.2.3.7 Exit Editor . . + ¢ ¢« ¢« ¢« + « « « 91
1.3 Program Leaf Mutations . . « ¢« « ¢ « o « « & « « 91 ,
1.3.1 Alternative Selection . . . « + . « . . . 92 s
1 3.2 Set Selection e e .« 92 f
, .3.3 Conditional Node Establishment 92 X
2. TERMINAL CONFIGURATION . &« +¢ v ¢ ¢ ¢ o o o o o o« o« o« + 94 _
., N
; 3. LANGUAGE SYNTAX DESCRIPTION . . ¢ ¢ ¢ +« « o o o« « o o 97 :
2] .-
» 3.1 The META PreprocesSsor . . « « « o« o s « o« o s« « 97 "
, 3.2 Language Description e e e e e .« . . .« 98
co 3.3 Format Controls . . « ¢ o + o &« « o o« « o o +» + 99
s 3.4 Language Grammar Design 100 N
3 ’ 3.5 Language Subsetting . e v e e s e e e« + . 104 R

B e

o

PR S

»p e e N e e

O o

FPoS

i

‘
W

“ur

LSU

bl A SO & & M LVN W Pt s, R\ - AP RENFIT I T RIS S TP

SYSTEM USER'S MANUAL

1. SYNTAX-DIRECTED EDITOR

The syntax-directed editor provides the capability to
create and modify programs under programmer direction. The
editor is responsible for maintaining the syntactic validity
of the program tree at all times. The editor also
coordinates the wuse of the other support tools in the
environment, such as the compiler and interpreter. For
program development, therefore, the user need only be

concerned with the use of the editor.

1.1 Entering the Editor

The editor is invoked by its name, SYNDE, followed by
the filename of the program to be edited. If the specified
file does not exist (it is a new file to be created by the
editor), the filename must be followed by a programming
language name. This name directs the editor to a syntax
description file (which must be present on disc) to guide

program synthesis. As an example:
SYNDE TEST ADAO

would be used to create a new program, called TEST, 1in the
ADAQ language subset using the syntax description file named

ADAO.SDF,
SYNDE TEST

would be used to edit the previously created TEST program.

AT ". T At \,)..-'.*-.‘4...

WALSS

A R R

I T A S

wp & % 75 "y

¥

Ayt

5
&
4
2
)
¥
?.
2
»
&
W
§
k
P
L4
d
i
2
t
;MM;

SYSTEM USER'S MANUAL

; :
} 6€J 1.2 Editor Commands g
- The keystroke sequences used to invoke particular :
% editor commands are specified by the user during terminal %
v configuration. Terminal configuration is described in ;
: chapter 2 of this appendix. ;
i

4 The entire program subtree rooted at the focus ;
| designates the entity being considered by the editor for E
, manipulation by the next command. The focus image 1is 5
? highlighted on the display screen, typically by reverse F
b video or higher character intensity. The means of :
f; highlighting is determined during terminal configuration. :
; The editing commands are grouped into three categories: E
- G focus movement, edit commands and control commands. Each

command 1is responded to either by its effect on the display

of the program tree or with an appropriate display message.

) 1.2.1 Focus Movement

Focus movement to adjacent program tree nodes such as

o
Y e S YTy

parent, son or sibling form the primary type of movement

; within the program tree. g
s
1.2.1.1 Move Right \

3 ‘

The MOVE RIGHT command moves the focus to the right

€ "
) sibling of the focus. If no right sibling exists, the tree -
N ;
. is ascended until some ancestor is found with a right "
sibling which becomes the focus. This process attempts to .

N

.\

'

X 82 :
(3 .
& A
¥ £ RO A PO I I AL SO NN LI EN NI RN O N S N e e T e e e Y e T

SYSTEM USER'S MANUAL .

maintain movement in the direction of an inorder traversal

of the tree.

: 9
1.2.1.2 Move Left 3
5

“ The MOVE LEFT command moves the focus to the left
K sibling of the focus. If no left sibling exists, the tree =
4 ¢
S is ascended until some ancestor is found with a left sibling ﬁ
i§)
5 which becomes the focus. This process attempts to maintain %
. movement in the reverse direction of an inorder traversal of i
k the tree. §
A 4
o
) 1.2.1.3 Move Long Right 3
i The MOVE LONG RIGHT command moves the focus to the i
L1
right and past any siblings which are generated from the :
‘Eb same repetition element in a production. -
A N
Y 1.2.1.4 Move Long Left g
4 The MOVE LONG LEFT command moves the focus to the 1left o
.f and past any siblings which are generated from the same N
X repetition element in a production. &
.)

1.2.1.5 Move Up

. The MOVE UP command moves the focus to the parent of Zi
; the focus, if one exists. This raises the focus to a higher N

- syntactic 1level. If the new focus has children other than
B »
R the previous focus it will also have a larger frontier. In i
. this case, the extended cursor designating the range of the R
’ .. focus subtree will enlarge to encompass a greater amount of -
a IS ¢
. i the program. This corresponds to a "zoom-out" effect. A
; o
‘ :

8

? 3 A\
> A

N i o A

0

ﬁr

LS

SYSTEM USER'S MANUAL "

| 3

LM

@ 1.2.1.6 Move Down »

The MOVE DOWN command moves the focus to the son of the &

.T

focus, if one exists. This drops the focus to a lower A

¥

1 syntactic level. If the previous focus has children other ;

’ .
than the new focus, the extended cursor will shrink ¢to

4 n..

encompass a smaller amount of the program. This corresponds §

to a "zoom-in" effect. o

i K

1.2.1.7 Move Long Up n

)

; The MOVE LONG UP command is equivalent to a series of t

i)

y move up commands. The focus is moved up the tree until its f

frontier becomes larger. The purpose is to force the type

of "zoom-out" effect described above and to 1increase the

1 AR

size of the program fragment designated by the focus.

1.2.1.8 Move Long Down

The MOVE LONG DOWN command is equivalent to a series of

move down commands. It serves to force the "zoom-in" effect

; -

q in contrast to the MOVE LONG UP command. E

j «
: 1.2.1.9 Move To Leaf

The MOVE TO LEAF command descends the tree from the ?’

E current focus, following an inorder traversal to the first f

: leaf node. This is the qui:kest way to get to the tottom of L-

the tree where most of the initial program entry occurs. ;

R

E 1.2.1.10 Move To Last Focus i%

o The previous focus location is saved by editor commands j

; R which change the focus. A return to the previous focus is §

. ;?_

84 -

LA N PR LRI RN AR I TGN W ST s SR IT IR I oo ety Fa, 15y s OO o 8 Ty '&'Ef

SYSTEM USER'S MANUAL

-
=
it »

-
-

4 . then accomplished by the MOVE TO LAST FOCUS command.

-

1.2.1.11 Mark and Go

¢

- -

Ten markers (pointers into the tree) are kept 1in the

-,

CRC

file information block for a program tree. The MARK command

may be used to clear an existing marker at the focus or to

set any marker zero through four to point to the focus.

T i

Markers five through nine are reserved by the system to mark

Y

errors detected by other tools in the environment, such as

The GO command may be used to move the focus

the compiler.

to any requested marker that is set. The GO command may K

also be used to move the focus to the root of the program

tree or to the root of a clipping tree which is used for cut

Markers are preserved

and paste operations described below.

in the tree from one editing session to another.

1.2.2 Edit Commands

1.2.2.1 Insert Right

may be used to insert a

The

The command

INSERT RIGHT

conditional element as the right sibling of the focus.

type of the element to be synthesized into the tree is

determined from the production definition of the parent of

) the focus. A valid conditional element must be capable of

being inserted at that point. An cptional element must not

j have already been synthesized into the list since only one

P
. is allowed. Inserting a second repeater immediately behind 5

an 1identical, wunestablished repeater is disallowed as a

useless, although syntactically valid, operation.

N T R T "M T, e ® " "M N e -y . P O P I R ST JNE U U SR SR IE AT D S SR ST Sy

SYSTEM USER'S MANUAL

If two or more successive conditional elements exist in

the production, the first may need to be inserted before the

second may be inserted. This results from the need to place

h the focus on the node representing the element preceeding

the one which is to be inserted. If this node does not

exist, it must be inserted,

but may be deleted after its K

use.

1.2.2.2 Insert Left

The INSERT LEFT command is the equivalent of the INSERT

RIGHT command for inserting a conditional element as the -

left sibling of the focus. This command is required to

insert a conditional to the left of the leftmost sibling.

1.2.2.3 Clip

The CLIP command copies the subtree designated by the .

: focus to a "eclipping" tree. Any previous clipping is

discarded and

the program tree remains wunchanged. This

2

represents the "cut" portion of a "cut and paste" operation.

-

A pointer to the clipping tree is maintained in the file

.« e ~ .‘.VI'.

py -

information block which accompanies the program tree. The

clipping tree remains with the program tree during its ﬁ

lifetime until replaced by another clip type operation. The X

clipping tree may itself be edited by using the GO command

to move the focus into the clipping tree.

As a safety precaution, to preserve the clipping tree hy

from inadvertant loss, the clip operation is not allowed and

the clipping tree remains unchanged if the focus is a leaf

- ;- 4_--'.‘_-.,» R P P) PP R AU . .'_‘-‘__-‘ .-

......

------ ~- e
»

o
B
»
+,

"
4
o

3
kd
%
d

]
SYSTEM USER'S MANUAL
\]
\

node. This would not be a significant operation since leaf

nodes are degenerate subtrees and are easily regenerated.

1.2.2.4 Copy
The COPY command may be used to attach a copy of the
clipping tree to the program tree at the focus node. The

previous focus subtree is discared and 1is 1lost, without

(s M e

recovery., The c¢lipping tree remains unchanged. This

- P
- e
Y. £ 0 O S _MEER T IS Ry

represents the "paste" portion of a '"cut and paste"

i i 1

operation. The copy operation is allowed only if the

Caf NN
e ™

syntactic type of the root of the clipping is the same as

" that of the focus, or if the focus represents a non-terminal

PR de G RETENEN

8 with an alternation definition and the root of the clipping

- is one of its alternatives. Here the clipping is attached

L R Y. Y. s e

below the focus rather than at the focus. The syntactic

type of the focus is displayed in the header line of the

PP I A

main window. The syntactic type of the clipping may be
observed by requesting display of the clipping in the second

window with the window command.

1.202-5 Kill l
The KILL command may be used to delete the focus from

the program. If the focus represents a conditional element,

|7 I P A R

it 1is simply deleted. Otherwise the node is required for

syntactic wvalidity. In this case, 1its sons and their

PN

subtrees are deleted. If the remaining leaf node represents
a non-terminal with a concatenation definition, the node is

4 ‘s
b re-expanded producing a new template. No recovery is

87

A e A e

* o g S0

N

‘f.’

SYSTEM USER'S MANUAL

possible from the KILL command. The DELETE command should

be used where recovery is desired.

1.2.2.6 Delete

The DELETE command is equivalent to a CLIP c¢ommand
followed by a KILL command. The focus is copied to the
clipping tree and is then deleted from the main program
tree. Material 1lost from accidental deletes may be
recovered with tl.e copy command. As in the clip command,
the focus 1is not copied if it is only a leaf node. This
command 1is disallowed when the focus is in the c¢lipping

subtree itself.

1.2.3 Control Commands
The control commands provide the user with control over
program display and interface to other environment

programming tools.

1.2.3.1 Help

The HELP command toggles the users request for help
menus. Help defaults to on at the start of the editing
session. The only help menu currently implemented is the
list of alternatives available for selection when the focus

is at a leaf which is an alternation node.

1.2.3.2 Elide
The ELIDE command toggles the elide flag for the focus
node. If the node was not previously elided, the portion of

the program tree contained in the focus becomes the extent

. “AD-A124 843 ﬂ SYNTAX-DIRECTED PROGRHNHING ENVIRONIEIT FOR THE AOA 272
i OGR AMNING LRNOUROE(U) ﬂlR FORCE INST O
IGHT-PATTER. L OF ENOINEERING
UNCLASSIFIED S E FERGUSON DEC 92 ﬂFIT/GCS/Hﬂ/S?D

LY,

Wb ok

IR AP AR ST U

e v e § P i e e ¥ L ok Wl Ny Vol Tl s I M e i B Pt ISR R S Y v e = T e o] 1*&-!“1.&

| 769
| P
s
15
flis
o WL\

Xl B of o q.
ddaa =l :
EEEFEITI — il ’
20 =l =i ;
w.
‘
’
F)
A
I.
¢
.5
W
»
4
A

- ey

S T
\’\.’L'.

w

RS

.’..'.\' L

1N .
. (\':L._‘_' A o DN ad o -

SYSTEM USER'S MANUAL

of the program image displayed on the screen. Upon moving
up the tree from the elided node, the display of its subtree
is suppressed and replaced with a string supplied by the

user during terminal configuration.

1.2.3.3 Window

The WINDOW command is used to control the presence of a
second window.,. The window may be requested to display the
clipping tree or any of the subtrees pointed to by markers
zero through nine or to be closed entirely. The focus may
not be moved to the second window, it 1is intended for
display only, not editing. The window will, however,
reflect any changes made to its displayed subtree that are
accomplished in the main window. The window is
automatically closed if the subtree being displayed 1is
deleted by some edit command in the main window. The
syntactic type of the root of the displayed subtree is given

in the header line of the window.

1.2.3.4 Invoke Compiler

The 1language specific compiler for the program tree
being edited is loaded and executed. The compiler flags any
errors using program tree markers five through nine and will
halt when all markers have been used or when compilation is
complete. After compilation, execution returns to the
editor and the focus is set to the node addressed by error

marker 5, if set, or to the root of tiie program tree.

-

s ARARALA

e o s

YA

YTV v vy

¥,

CE7 % % A TR A K

4 A,

COv e
-~

BaCs

R
r
e
?
r
4

NS T W AN W ¥ R gt N oA i e o 0%, - b RS R T NP RN TR TR TR TR VA S L N T Y T IV VOV T VTV TP IV RN

SYSTEM USER'S MANUAL

1.2.3.5 Invoke Interpreter

" ™
3

The interpreter is loaded and executed to process the
program tree being edited. The interpreter compiles the
program to create pseudo-code for interpretation. 1If errors
are encountered, return to the editor follows the same

process as for invocation of the compiler.

4 Before each instruction 1is executed, the topmost
elements of the runtime stack are displayed along with the
next instruction to be executed. The interpreter commands

available to the user are explained below.

2 1.2.3.5.1 Single Step
. The SINGLE STEP command, invoked by 'S' or SPACE causes

u execution of the displayed instruction. If this instruction

-0

is the 1last in the program, the interpreter is reset to

resume execution at the start of the program and the stack

o7

is returned to the initial state. The focus of the display

is moved to the tree node associated with the instruction.

1.2.3.5.2 Continue Execution
The CONTINUE EXECUTION command is invoked with 'C',
Execution of the program is allowed to continue until

interrupted by another command. Each instruction execution

is accompanied by update of the program tree display and

dump of the stack and next instruction. Execution recycles

20380 22K

to the start of the program after reaching the end.

LLLLL

SYSTEM USER'S MANUAL -

- 1.2.3.5.3 Restart k)

h . ',’ ,
* The RESTART command, invoked by 'R', resets tne -

' interpreter to resume execution at the start of the program. ?
N

! The stack is returned to the initial state. ﬁ
V 1.2.3.5.4 Exit Interpreter ,
; N
The EXIT INTERPRETER command, invoked by 'E', returns n

]

control to the editor to resume editing of the program tree. N

‘ 1.2.3.6 Invoke Lister 2
4 e
; The language independent lister is loaded and executed ¥
D .‘,,

to create a text image of the program tree being edited.

, The ©program lister produces a text format source file from b

the program tree for use in generating hardcopy listings or .

‘ﬂi for transfer to a text-based environment. The text image is g
generated with unestablished conditional nodes omitted, p

since these are ignored by the compiler. Elided subtrees .

) are not suppressed from the image. Control returns to the B
: editor. F
: 1.2.3.7 Exit Editor -
. The program tree being edited is saved and the editing R
E session is terminated. ?
. s
S

1.3 Program Leaf Mutations

The 1leaves of the tree are points at which |wuser

- v P v .

. decisions are made to extend the program. Alternatives are

selected, conditional nodes are established into the tree

L ARS

: and character values for sets are supplied.

Lo

- g

1)

SYSTEM USER'S MANUAL

1.3.1 Alternative Selection

A leaf node which has an alternation definition
requires the selection of one of its alternatives. If help
is toggled on, the list of alternatives is presented at the
bottom of the screen. The user merely types the name of the
desired alternative. Command-completion by the editor
speeds the selection and reduces the number of required
keystrokes by determining the portion of the name common to
all remaining alternatives. The alternatives for the ADA
subunit, for example, are proc_body, func_body, pack_body
and task body. After typing 'p', the list is reduced to
proc_body and pack_body. An 'r', then, reduces the list to

the single alternative of proc_body.

1.3.2 Set selection

A leaf node which represents a set may accept a
character value according to the range of characters given
by its name. That name also represents the node's syntactic
type which 1is displayed in the header line of the display
window, providing the user with a range of valid characters.
The value of any valid character typed will then be saved in

the node and represent it in the program display image.

1.3.3 Conditional Node Establishment

Conditional 1leaf nodes require wuser interaction to
establish them into the tree. If the node represents an
alternation or a set, this interaction 1is implied by

selecting an alternative or typing a character,

92

s x u

- . -.}1’v . A A, 2,

*'ﬂ ‘s

RS
o

-

e e s w e T

SYSTEM USER'S MANUAL

respectively, as described above. If the node represents a
concatenation non-terminal or a string, typing the first

character of its displayed name will establish the node.

When established, the node's surrounding brackets or
braces are no longer displayed. If the conditional being
established is a repeater, a new, unestablished repeater of
the same type is inserted after the focus in anticipation of
the wuser's desire to later establish another such node in

the tree.

93

bd @', W " -

N Ny A A o T T 7, . s e

R

.)

I

PR M

SYSTEM USER'S MANUAL
2. TERMINAL CONFIGURATION

A configuration progran, CONFIG, is used during
installation to interactively prompt the user for
information which is supplied to the system in a terminal
description file. This file includes the screen dimensions
and terminal strings to accomplish a variety of terminal
functions. The terminal description file also contains the
list of strings to be interpreted as specific commands by
the editor so that they may be tailored to the control key

or function key capabilities of a given terminal.
CONFIG may be invoked with:
CONFIG *

where the "#" i3 optional and specifies that the existing
terminal description file (TERMINAL.TDF) is to be <cleared
before use. The user is given the opportunity to modify the
recorded terminal characteristics and input command

sequences.,

CONFIG will inquire at times if the wuser wants ¢to
modify or reexamine portions of the terminal description.
Respond to questions with a "Y" or "y" for yes or any other

character for no.

CONFIG will first request information on the terminal's

lines per screen, characters per line and number of lines to

be used in the second window. CONFIG will prompt the user

Fl QR AT ILL

Tn

o
, L S e}

IBo% & 5 % 4

AR AN,

12

:

L

My G VNV Y

("".f‘" rr

Ty e de

b

SYSTEM USER'S MANUAL

-~

for numeric information by supplying the current value and
@ an inclusive range of valid values. Enter a new value or
type RETURN to retain the previous value. Invalid values

are rejected.

EESCOC R P WD Yo

Next, CONFIG will request input sequences to represent

input commands. CONFIG presents the user with the current o

2 sequence (if one is present) and the option to change it or X
proceed to the next item. Control keys in a sequence are

) displayed as “x where x is the control character plus a bias

ot A A 4y,

of 64 to produce a printable character. For example, a
line-feed character (ASCII value 10) will display as "J.

CONFIG provides several opportunities during terminal

. configuration to reexamine character sequences and correct n

‘U’ mistakes. When entering character sequences for input ;
commands, merely strike the keys desired to invoke the }j

: command function, Input commands must begin with a non- :‘

printable control character. Each input command sequence

must, of course, be unique.

CONFIG will then request output sequences to perform

R

v varies display funtions. These are entered in the same -
manner as input sequences. These sequences are: E
- intialize terminal: Sent to the terminal at the .
start of the editing session to allow for El
b
special setup. »
s -
A b
' L
' .
' .
95
d [N
b -
e A e e e e ;A e e ene e >

W *)\'.\'.“. N R \ A .,-.‘. \

-VaVeVa'a'e

SYSTEM

D XN NI LI NN TN I T AN IR

USER'S MANUAL

display tab: Used for program indentation. This
should contain only printable characters,
usually a number of spaces.

mark elided material: Used to represent an elided
program subtree on the display.

divide windows: A single character used to fill the
header line of each window.

clear screen: Clears the terminal screen.

position cursor: Prefix of display command to
position the cursor on the screen, This
sequence will be followed by the display line
(first is 0) plus 32 and the display column
plus 32. Other forms of display cursor
addressing are not yet supported by terminal
configuration.

erase to end of line: Clears the display from the
cursor location to the end of the line.

enter reverse video mode: Sets the terminal into a
highlight mode, such as reverse video, to
distinguish the focus.

exit reverse video mode: Exit the display mode set
by the "enter reverse video mode" sequence.

terminate terminal: Sent to the terminal at the end
of the editing session to <clean up the

terminal status.

e m e

= 27—
> S L

St

h o

} A2

"y

.
(4

s gl

%

$ R

-

]
p o

“

L 4

Lq. P’ '.r4 ‘.' "."-l"‘l“..

N
)
"
'
.

SYSTEM USER'S MANUAL

L grr v e =

'; 3. LANGUAGE SYNTAX DESCRIPTION
3.1 The META Preprocessor -

The syntax description actually used by the environment

T . e

is a condensed representation of a textual META syntax

description. The META preprocessor is invoked to create a

>

. syntax description file from a textual META description by a

y command of the form:

3

META filename subset_index

.

] where filename.SYN is the name of a textual META syntax f
X)
description. The subset_index (as described later) N
2] 24
X indicates those elements of the description to be eliminated f
\]
to form a subset. The syntax description file to be created &
ii; is given the name filename.SDF, where filename may be b
o’
extended by digits from the subset_index. As an example the y
command: é'
L%
META ADA R
R
‘_-P
o
would create the syntax description file ADA.SDF from the :‘
textual description in ADA.SYN. The command: .
META ADA $0]
T
would create the syntax description file ADAQ.SDF from the !
o]
textual description in ADA.SYN while removing elements k
20,
marked with subset 0. o
e
,'4'
\.r
\f
»

o
o
»

SYSTEM USER'S MANUAL

3.2 Language Description

A META syntax definition is presented as a sequence of

J production rules, each defining some non-terminal in the

language grammar. The first production rule in the

description must define the non-terminal representing the

language goal symbol. Appendix I specifies the format of a

META description.

§ e

Each production rule may be either a concatenation or

alternation definition. A concatenation 1is an ordered

™

* sequence of elements and represents a template to be 1laid

%

into the program tree structure beneath a node which maps to

-

the non-terminal being defined. Elements in a concatenation

list may be conditional (options or repeaters). An option

G is an element enclosed in brackets ("[" and "]") and dénotes
L an optional element. A repeater is an element enclosed in

braces ("{" and "}") and denotes an element that may appear

A L

Zero or more times. Options and repeaters may contain only

a single element. The hide indicator ("!") may be used to

Y mark conditional elements so they will not be automatically

R4

into the -program tree. A concatenation 1list

synthesized

must contain at least one unconditional element to represent

£ O A

i

the production in a program tree.

An alternation is a list of alternatives, each a single

e

unconditional element., The 1list is surrounded by angle

2 "t o el "

brackets

(ngn and ">") to distinguish it from a

concate: *ion.

L) e

tn o o

2 a"s 1 & &

“Pava a2 9]

3
o)

SYSTEM USER'S MANUAL

A syntactic element may be a non-terminal identifier, a
terminal in the form of a literal string enclosed in quotes
or a set construct. Each non-terminal must be defined
exactly once in the syntax definition. Literal strings are
typically used to represent reserved words and delimiters in

the language grammar.

The set construct represents a compact means of
expressing an alternation consisting of displayable ASCII
characters. The set's alternatives may be single characters
or pairs of characters which specify an inclusive range in
the ASCII character set. META requires the set alternatives
to be presented in ascending ASCIi order. Sets are
typically wused in the specification of identifiers and
numbers (as they are commonly called) whose individual
character component values are determined during the

synthesis process.

3.3 Format Controls
Program display formatting controls are embedded in the
syntax description to allow the reconstruction of a textual

display image from the abstract form of a program tree,

A space mark (""") preceeding or following an element
results in the placement of a corresponding space 1in the
program tree image. A newline mark ("8") preceeding an
element causes a new line to be generated in the program
image followed by the proper number of tabs for the current

level of textual indentation.

-

-

e Fan ML

> -
B .

45 Sl

vl N Y

15

e v -
" Ly

AOICIORAPAS Tl WM

-

T e

,"."-’-_’{ 1‘{&

:
;

P

»
WA

dR o3 v et Lo o L. LIS.AE R X K Gd bt i Lot %, e CaN oW/ vews vy i) Rog- 5 ot o b g 3

SYSTEM USER'S MANUAL

An indentation mark ("+") preceeding an element
indicates that the <current indentation level 1is to be
increased and causes a new indented line to be generated.
The entire program subtree beneath a node mapped to an
indented element will be indented, after which the prior

indentation level is restored.

Format controls for an element take effect only when
that element is synthesized into the program tree. Format
controls for conditional elements, therefore, must be placed
carefully to insure that the appearance of a structure

remains desirable with or without the presence of a

conditional and whether or not it has been established.

3.4 Language Grammar Design

When creating a META description for a program language
it may be convenient to examine existing definitions
prepared in some other syntax definition language. Extended
BNF definitions are particularly useful and require the

least effort to translate.

Extended BNF notation, in general, allows a more
complex form of expression than is available with META,.
Specifically, META disallows the use of complex expressions
within options, repetitions and alternatives. This
restriction generally requires an additional production rule
to define a new non-terminal ¢to replace a complex

expression 1in an Extended BNF definition to ¢reate an

equivalent META definition. As an example, the ADA

—Ea
e

B LIPS

3 es
PR

LI T I

Sy ow

-
P T -

e

" S e S

- -
oS,

oy R~

R e o e e pd
-

[f ok

§ SN

3L AAIA

¥

Y

PO ALY

a'e & & A &

e

o]

%

ol alo oo’

SYSTEM USER'S MANUAL

reference manual defines an identifier list in a form of
Extended BNF as:
identifier_list ::=
identifier { , identifier }
META will not allow two elements ("," and identifier) within
an option. The addition of a second production eliminates
the problem resulting in the equivalent META definition:
id__list =
identifier { identifiers } ;
identifiers =
"." identifier ;
Most of the problems encountered when translating from

Extended BNF to META are of this type.

It is also important for the grammar designer to be
aware of the impact particular decisions may have on the

syntax-directed environment. The syntax-directed editor

makes demands not normally required of a language grammar.

Achieving a desired display format and creating a
natural and meaningful editing process for the programmer
are human factors considerations which may require
modifications to the language grammar. Conditional elements
and alternations in a META grammar definition represent
decision points or places requiring programmer attention
during program editing. These situations should therefore
be minimized where possible or placed where the decisions

seem most natural.

101

IS A U

SN

S L ot g I

TONIT

e

TR ma] | ARSNIAS SR

£
‘.

e b

S

PR A

’-.0 "% Y% N W

Feero e e

- - . -
’ L

MOy

SYSTEM USER'S MANUAL

itself

If an alternation c¢ontains an element which is

defined by an alternation, the wuser 1is required, when

editing, to make two successive decisions. This can be
reduced to one decision by including each alternative of the

i second definition as an alternative in the first. In this

" . .v.~ ,‘v"‘.d.-,.,'..."vf‘l

manner, the ADA reference manual definitions for primary and

W

N

SIS

ﬁ literal:

primary ::=
literal | aggregate | name | allocator
i function_call | type_conversion
i qualified_expression | (expression)

O

) ay a0y

- -

literal ::s . . .
numeric_literal | enumeration_literal

: | character_string | null

%

[\l
TN e
NIDADS

were reduced to a single equivalent META definition:

—
.

’

4 " primary = <

; decimal number name nested_expression
V based_number enum_lit char_string

) func_call "null" aggregate allocator
! type_conversion qualified_expression >;

S S W

by 1including 1literal's alternatives within primary. The

A ARRS

alternatives for numeric_literal were likewise moved to the

)

definition of primary. These modifications were achieved at

no cost since the non-terminals for literal and

T Y Y, ‘y NS

numeric_literal are referenced only once. Note also that

the alternatives have been rearranged in an attempt to name

the more frequently used ones first, the same order in which

e, Y

they will be displayed to the user for selection during the

editing process.

7‘.- AN A

."*.' 7, ‘

................................
.....

SYSTEM USER'S MANUAL

4}

The selection of non-terminal identifier names

T

- .
Cﬁ? represents another design concern. Most names will appear

i

at some time in the display of a program tree as a

placeholder for an incomplete program fragment and to

=
" iy g Ll]

indicate syntactic type. Names chosen should therefore have

some easily understood mnemonic value but should not be so

long as to clutter the display screen.

AR,

- - -

Unfortunately, the limitations placed on language

definitions by META may create complications in the -editing

process. The ADA reference manual definition for an

identifier, for example, is:

identifier ::=
letter { [underscore] letter_or_digit }

o e e i

which eliminates the possibility of double or trailing .

underscores. An equivalent META definition removing the @-

complex expression within the repetition would be:

identifier =
"AZjaz' { score_letter_digit } ;

score letter_digit = o
T n_n 1) '09!AZ)az! ;

keystroke

This additional production requires an additional

“y

: for each subsequent letter or digit. An alternative META

definition, eliminating the additional production, is:

identifier =
"AZlaz' { '09}AZi_taz' } ;

. -.-.\ j""'n’va

e,

This provides a much smoother format for identifier entry at

P S

103

.......

SYSTEM USER'S MANUAL

? - the expense of allowing 1illegal double or trailing L

errors which must be detected by the compiler.

underscores,

The added ease of identifier entry, a common occurence, was

considered significant enough to warrant deferring detection

of such trivial (and perhaps unnecessarily contrived) errors

to the compiler phase. Fortunately, most design decisions

do not require compromising the syntactic validity of

program trees produced by a grammar.

3.5 Language Subsetting

Alternative and conditional elements in META may be

S X% N5 N W

L 0

marked with a subset index indicator which is a dollar-sign
(ll$")

indicating a subset within which the element is too be

followed by a series of digits ("0" ¢to "7%), each

u restricted. The META preprocessor can be instructed, via

the subset_index argument in the invocation command, to

rETF

) omit such elements when building a syntax description file

g e ¥ o T ¥

from a META definition.

When all references to a non-terminal are removed by

" rorw

subset exclusion, its production rule is no longer required.

All wunreferenced rules are eliminated from the resulting

syntax description file to conserve space.

-)
.J‘J’Mﬁ'* o

...............

aa,

¢ VITA ,
.

“° &' Scott E.

b Louis, 1Illinois to Ed and Helen Ferguson. He attended high

Ferguson was born on 31 May 1956 in East St.

school at Belleville Township East in Belleville, Illinois

e e

as class valedictorian in 1974. In May of 1978 he graduated

from the United States Air Force Academy where he earned a "
E Bachelor of Science Degree in Computer Science. His first ;
L active duty Air Force assignment was with the 4501 Computer :
i Services Squadron at Langley AFB, Virginia. He then entered :
S the Air Force Institute of Technology at Wright Patterson E
. f

AFB, Ohio in June of 1981 as a graduate student in computer

j scilence.

Captain Ferguson was married to Mary Stevens on June 7,

A
» .

v 1978.

Permanent address: 1 Berkley Court
Fairview Heights, IL 62208

RO

RPN LN

gty N Y 4 4

.
o« F e

AZ

-
E o AR IR

% =y

Lolate s 0" o -...:_‘ o

L
w
p 2

. . e A L e a e e e e e e e ..
VN LSRG G G G A 3 S DS S SRR S ARSI RORYN Y

. .
T vmm Y e e v -

SECURITY CLASS'FICATION OF THIE BASE (When Dae ‘Ehlerod)

‘ REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFCRL COMPLETING FORM

¢ T REPORT NUWOER 2. GOVT ACCESSICN NO.

3. PECIS'ENT'S CATALOG NUMBER

Cant

‘ «?‘" R Ab-A1244%3
'_f‘.‘. : 4. YITLE (and Subtitle) S. TVFE OF REPQG\T & PERIOD COVERED
LTV Threm T com A [
TV T - VITTIT I

TS T T 2 - EE1E .

» TA T T T, Ty TR, 6. PERFOKMING ORG. REPORT NUMBER ‘

K 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
SJgnatt I. Tercurson

; Air Force Avionics Laboratory (AFWAL/AAAF-2)

S. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PPOGPAM ELEMENT. PROJECT, TASK
‘ ' AREA A WORK UNIT NUMBER
Air Force Institute of Technology (AFIT-EN)
; Wright-Patterson Air Force Base, OH 45433
CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Tocemther 12707 l

Wright-Patterson Air Force Base, OH 45434

. NUMBER OF PAGES
“a-n

4. MONITORING AGENCY NAME & ADDRESS(/! dilferent from Controlling Office)

18. SECURITY CLASS, (of thia repor?)

Unclassz

, 1
ifica ;
i

1Sa. DECL ASSIFICATION 'DOWNGRADING
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

[2N #4423
-
PAY

2noroved for nublic reoalease: distr

viien unlinited.

DISTRIBUTION STATEMENT (of the abstract entered In Block 20, {1 different from Report)

LSS o Sl]

s l"l"T J"Aﬁa

) - .-
1 oW

-
- ia)

I .

=TT

T

4 ..

N e e vy - -
vv‘c:(- ..4). 4.

W2 TG

18. SUPPLEuENTAaY NOTES - .) et Y 4 . S
4 .d“'TgDT““. AW AFR ey >Croves for nuklic release; Ti00 LN LT
« CLAVER
Regagi-h =nid Pirtasnianal Dovolopmo‘!. 1 4 FEB]983
chrca Insirtetn ot Yo o Ly yalin) A € Tnfar .
. WUkt it ACh G el ;;gﬁcb,- of Informaticn
. KEY WORDS (Continue on reverse side il necessary and identify by block number)

20. ABSTRACT (Continue on reverse side If necessery end Identity by block numlnr)

-

;2 Thie Zocumoal Loncrittes e ZoFicn and immlementation of -
) nrocrammine 2uomart environment for the 173 Jencuace Thazed on &

. srntan- Alr’C'“‘ elitor ant a wrocrfam tran structure. hourt the

g “rototvﬂa comiler iz 1inited £~ 2 2mall suiz2t, the full A

: . ,1a1~uara iz su>nrtet YWy Lho ra2maindar af the oﬂvwrnnmeﬂt Eal Rl
Y] R “t A S e - d IR . - Yem e e e - Srmvedes e el

o

" .' *

N theorzfars caasle of rrocazzinc x;r;u;llv wny grocramming langusoc.
e nvatobtvmae avmiax-Jdir-~nteld environmznt damonztrates the anilis:

o o N

I A S

’

g g

B¢, bt S

EDITION OF 1 NOV €5 1S OBSOLETE o

1473

FORM
DD 1t JAN 73

- - B © ot -

-\:(-...'.:.-."}\‘-"...\. ‘" .'\:.)

»
S PR JS I T Y e ™
A2 *A £ l’-' RIS

N
-~
-

A

e LSRRI B Y

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

J' - .
! +n raduce =ranrvammer idle tima Juring Zevelenmant B eliminatin~ Y
’ SRR AR CoTTn - T el
e ot ~sarsing and lexical analyzis in the c~mniler, e rrocran tree 2
. «‘{;gi structurs 2lzo 2lleows for the Zcvelo=ment of sunerior environmant :
* toals=, :
; 4
} H
4 ‘
.i’ r
:. &
] ‘)
' !
=
! f
S 9
L] |
- , 1
Q‘ b
N .
\ L
- -
., 1Y
[, .
N {
. H
- 2
\ 13
Yo b
-84 b
j '
:4
pt s
. ¢ X
L} ‘!

AR
P T U

o »
& : ;
.
oA , .
5 »
N t
a .
Q‘ R
.h
4 .
: P ,
R
e) ;
. A
]
4 .
-
] v
4 -
i o :.
. [
‘ ! Unclaeeitinﬁ
‘ SECURITY CLASSIFICATION OF THIS PAGE When Dete Entered) -

L T e e N e e A S T T T e Y S L N e p e

IA—AL

L T R G LN L LTS FC TR0 0% SUATh 75 FUS T I RS LUty Ty Rt e, O UL L. PRI TS, F 70 ¥3 2 I QIR LI N T DS B

R

